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Abstract: In this paper we review some different basic approaches for solving bi-level optimization problems (BLOP). 

Firstly, the formulation and some basic concepts of such BLOP are presented. Secondly, some conventional approaches for 

solving the BLOP such as; vertex enumeration method, branch and bound algorithm, Karush Kuhn-Tucker (KKT) 

transformation are exhibited. The vertex enumeration based approaches which use the important characteristic that at least one 

global optimal solution is attained at an extreme point of the constraints set. The KKT approaches in which a BLOP is 

transformed into a single level problem that solves the upper level decision maker (ULDM) problem while including the lower 

level decision maker (LLDM) optimality conditions as extra constraints. Fuzzy programming approach mainly based on the 

fuzzy set theory. Finally, formulation of the bi-level multi-objective decision making (BL-MODM) problem and recently 

developed approaches, such as; fuzzy goal programming (FGP) and technique for order preference by similarity to ideal 

solution (TOPSIS) approach, for solving such problem are presented. Numerical illustrations are presented for each technique 

to ensure the applicability and efficiency. 
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1. Introduction 

Many planning problems require the synthesis of decisions 

of several interacting individuals or agencies. Often these 

groups are arranged within a hierarchical administrative 

structure, each with independent and perhaps conflicting 

objectives. Multi-level decision making has always been 

regarded as an important aspect of the planning process [1-5]. 

Frequently, the impacts of directives from supervisors and 

reactions from subordinates have been viewed as 

externalities, beyond the control of planner. However, there 

have been attempts to model the ability of one planner to 

indirectly influence the decisions of others to his benefits. 

The BLOP, which we are interested in our work, are merely a 

special case of the multi-level decision making problems [6-

10]. An important feature of hierarchy structures is that a 

planner at one level of the hierarchy may have his objective 

function and decision space determined, in a part, by the 

other level. In addition, each planner’s control instruments 

may allow him to influence polices at the other levels and 

thereby improves his own objective function. These 

instruments may include the allocation and use of resources 

at lower levels, and benefits conferred up on other level. 

Literature Review 

From the historical point of view, BLOP is closely related 

to the economic problem of Stackelberg in 1952, in the field 

of game theory. The original formulation for BLOP appeared 

in 1973, in a paper authored by J. Bracken and McGill in 

1973, it was developed by W. Candler and R. Norton in 1977 

who first used the designation "bi-level" programming. 

However, it was not until the early nineteen eights that these 

problems started to receive the attention they deserved [11]. 

The formal formulation of the BLOP was first defined by 

Candler and Townsley [12] and Fortuny-Amat and Mc Carl 

[13]. A large part of the research on bi-level programming 

techniques has centered on its linear version, the linear bi-

level decision making problem, in which all formulas of both 

the objective functions and the constraints from the leader 

and the follower are linear functions. The BLOP problem is a 

nested optimization problem with two-levels (namely the 
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upper-level and the lower-level) in a hierarchy. The decision 

maker (DM) at the upper-level (the leader) firstly optimizes 

his/her objective function independently. After the leader 

chooses the decision, the DM at the lower-level (the 

follower) makes his/her decision. The leader knows the 

objective and constraint functions of the followers, who may 

or may not know the objective and (or) constraint functions 

of the leader. However, the leader’s decision is influenced by 

the reaction of the follower. Since many practical problems, 

such as engineering design, management, economic policy 

and traffic problems can be formulated as hierarchical 

problems, it is important to solve them effectively. Therefore, 

many researchers have done intensive research on the 

theories, methods and applications of the BLOP [1, 3]. 

The methods for solving the BLOP have received more 

extensive attention than theories and application separately. 

The various traditional algorithms to solve the BLOP can be 

roughly classified into the following categories: Extreme-

point approaches for the linear case, Branch and bound 

algorithm, Parametric Complementary pivoting (PCP), 

Descent methods, Penalty function methods, Trust-region 

methods and so on. However, the BLOP is a non-convex 

problem, and it is extremely difficult to solve it. During the 

past two decades of last century, several approaches for 

solving BLOPs have been deeply studied by Candler [12], 

Bialas and Karwan [14, 15]. Bialas and Karwan are the 

pioneers for BLOPs who presented vertex enumeration 

method, called ���  best solution. These were solved by 

simplex method. To solve the non-linear problem that arises 

due to the KKT conditions, Bialas and Karwan [15] proposed 

a parametric complementary pivot (PCP) algorithm which 

interactively solves a slight perturbation of the system. Ben-

Ayed et al. [16] showed that the PCP may not converge to 

optimality. Among the many approaches for solving the 

BLOPs, the branch and bound algorithm appears to be one of 

the more effective approaches among the traditional 

optimization techniques. In 1981 Fortuny-Amat and McCarl 

[13] suggested the use of two equality constraints with zero-

one variables to replace the non-linear complementary term. 

In 1982 Bard and Falk [17] proposed the branch and bound 

algorithm which based on a series of transformation through 

the complementary slackness condition. Moreover in 1990 

Bard and Moore [17] used this concept to improve their 

earlier branch and bound algorithm. 

Due to complexity of the BLOPs, there are no efficient 

traditional techniques for obtaining the solutions of a 

reasonable size problem and most of the classical approaches 

developed so far do not consistently perform well. Moreover, 

decision deadlock arises in some situations due to rejecting 

the solution by the follower for not giving a decision power 

to him/her to reach a minimal level of satisfaction in the 

decision making situation. To overcome the shortcomings of 

the classical approaches, Fuzzy Programming (FP) approach 

to BLOPs, by using the concept of tolerance membership 

function, was introduced by Lai [18] in 1996. Hence, Shih et 

al. [19] extended Lai's concept by using non-compensatory 

max-min aggregation operator for solving multi-level 

optimization problem (MLOP). Shih and Lee [20] further 

extended Lai's concept by introducing the compensatory 

fuzzy operator for solving MLOP. Sakawa et al. [21] 

developed interactive FP for solving two-level linear 

fractional programming problems with fuzzy parameters in 

2000. Also, Sakawa et al. [22] proposed Interactive FP for 

decentralized two-level linear programming problems in 

2002. 

In 1997 Shi and Xia [23] studied the bi-level Multi-

Objective Decision Making (BL-MODM) problem and an 

interactive algorithm to solve such problem. Abo-Sinna [24] 

discussed non-linear multi-objective BLOP in fuzzy 

environment in 2001. Osman et al. [25] in 2004 studied 

MLOP under fuzziness. In 2006 Abo-Sinna and Baky [26] 

presented balance space approach for non-linear BL-MODM 

problem. Zhang et al. [27] presented an algorithm for solving 

decentralized BL-MODM problem with fuzzy demands by 

using � -cut method. Gao et al [11] studied fuzzy linear 

BLOP based on �-cut and goal programming. 

FGP approach to BLOP has been recently studied by 

Moitra and Pal [28]. In 2003, Pal et al. [29] presented a GP 

procedure for fuzzy multi-objective linear fractional 

programming problem. Pramanik and Roy [30] proposed a 

solution methodology based on FGP for solving MLOPs. In 

2009, A. Baky [31] studied FGP algorithm for solving 

decentralized BL-MODM problems. Also, Baky extended 

FGP approach to solve ML-MODM [32]. In addition to that 

Baky et al. presented a FGP procedure for solving fuzzy 

BLOP [33]. Recently the TOPSIS approach has been 

extended by Baky and Abo-Sinna to solve the BL-MODM 

problem [34]. MLOP was as of late concentrated by Chen 

and Chen [35]. Youness et al. exhibited Fuzzy integer BL-

MODM in [36]. A modified TOPSIS method presented by 

Baky & Elsayed for BLOP with vague numbers [37]. 

Ranarahu et al. presented method for solving a multi-

objective BLOP [9]. Lachhwani in [38] tackled a solution for 

MLOP based on FGP approach. Ren developed in [39] a 

method to deal with the fully fuzzy BLOP by applying 

interval programming notions. An interactive approach for 

fractional MLOP under fuzziness displayed by Osman et al. 

[3]. Parametric notions of fractional fuzzy MLOP has been 

introduced by Osman et al. [2]. 

The paper is organized as follows: Following introduction, 

Sect. 2 present some notions and formulation of BLOP. In the 

next section conventional approaches for solving BLOP. 

Sect. 4 incorporates BL-MODM problem moreover FGP and 

TOPSIS for tackling such problem. Finally, some conclusions 

are incorporated in Sect. 5. 

2. Notions and Formulation of Bi-Level 

Optimization Problem 

A bi-level programming problem can be viewed as a static 

version of the non-cooperative, two planner game introduced 

by Von Stackelberg in the context of unbalanced economic 

markets [11, 17, 18]. The problem we want to consider have 

the following common chrematistics [15, 17, 40-42]: 

1. The system has interacting decision making units within 
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a hierarchical structure. 

2. Each subordinate level executes its policies after, and 

views of, the decisions of superior levels. 

3. Each unit maximizes net benefits independently of other 

units, but may be affected by the actions and reactions 

of those units. 

4. The external effect on a DM’s problem can be reflected 

in both his objective function and his set of feasible 

decisions. 

2.1. Problem Formulation and Definitions 

Assume that there are two-levels in a hierarchy structure 

with Upper-Level Decision Maker (ULDM) and Lower-

Level Decision Maker (LLDM). Let a vector of decision 

variable � = ���, �
� ∈ 
�  be partitioned amongst the two 

planners. The ULDM has control over the vector �� ∈ � ⊂	
��  and the LLDM has control over the vector �
	 ∈ � ⊂	
�� , where � = �� + �
 . When the policies are finally 

executed, level one will first specify ��, and level two will 

then specify �
	 , with the full knowledge of level one’s 

decisions. Let � ⊂ 
�  denote the feasible choices of ���, �
�. 

We will assume that � is closed and bounded. So the BLOP 

may be formulated as follows [12, 13, 15, 16, 41]: [1��	�����] !"�#$� 	%����, �
� = 	 &�� = &���� + &�
�
 

'ℎ�)�	�
	�*���� [2�,	�����] !"�#$� 	%
���, �
� = &
�	 = &
��� + &

�
 

�-./�&�	�* 

� ∈ � = 0� = ���, �
� ∈ 
�|2��� + 2
�
 ≤ ., ��, �
 ≥ 0, . ∈ 
67 ≠ 9                                   (1) 

where 2�  and 2
  are ! × ��  -and ! × �
  dimensional 

matrices, respectively, &��  and &
�  are �� -dimensional 

vectors, &�
 and &

 are �
-dimensional vectors, and � is the 

bi-level convex constraints feasible choice set. 

Because of various applications in different fields, 

different names have been used in literature for the leader. 

Some of them are upper, outer, level one, or policy. Similarly 

lower, inner, level two, or behavioral are used instead of 

follower. 

For any fixed choice of �� , the lower-level will chose a 

value of �
 that optimizes its objective function. Hence, for 

each feasible value of �� , the lower-level will react with a 

corresponding value of �
 . This results in a functional 

relationship between the decisions of the upper-level and the 

reactions of the lower-level, say �
 = ;����. Based on these 

we have the following definitions [11, 16, 41]: 

Definition 1: 

The constraint set of the BLOP: 

� = 0� = ���, �
� ∈ 
�|2��� + 2
�
 ≤ ., ��, �
 ≥ 0, . ∈ 
67 ≠ 9, 
The feasible set for the lower-level for each ��: ����� = 0�
 ∈ �, �
 > 0|2
�
 ≤ . − 2���7 
The projection of � onto the upper-level decision space: ���� = 0�� ∈ �|∃	�
 ∈ �, 2��� + 2
�
 	≤ .	7 
The lower-level rational reaction set for �� ∈ ����: ;?����� = 0�
 ∈ �|�
	�*����:!"�	[%
���, �
�	'"�ℎ	�
 ∈ �����]7 
The inducible region: A
 = B���, �
�C�� ∈ �, �
 ∈ ;?�����D 
The rational reaction set ;?�����  defines the response 

while the inducible region A
 represents the set over which 

the ULDM may optimize his objective if he/she has the 

control over all the variables. 

Definition 2: A point ���, �
� is called feasible solution of 

the BLOP if ���, �
� ∈ ;?�����, �� ∈ ����. 

Definition 3: A point ���∗, �
∗� is an optimal solution of the 

BLOP if and only if [11, 16]: ���∗, �
∗� is a feasible solution of the BLOP, 

For all feasible points ���, �
�, %����∗, �
∗� ≤ %����, �
�, 

For all feasible points ���∗, �
� , if &

�
 = &

�
∗  then 

&�
�
∗ = &�
�
. 

The third condition states that if the LLDM is in different 

between �
∗  and �
  when ��  is fixed to ��∗ , then the ULDM 

must also be in different between ���∗, �
∗� and ���∗, �
�. 

2.2. Effects of Multiple Optima 

For any BLOP, care must be taken when the solution to the 

lower-level problem is not unique for fixed ��. Although not 

affecting the value of the lower-level objective function, %
���, these solutions can have a greatly varying impact on 

the objective at the upper-level. To overcome the problem 

Bialas and Karwan [17] in 1978, suggested replacing the 

original lower-level problem by %
∗��� = %
��� + F%���� 

where the value of F > 0  is suitably small, this method 

perturbs the lower-level problem. This would require that the 

ULDM share a small portion of its earning to encourage the 

LLDM to choose a desirable solution to the upper-level 

objective. In general, to check the effect of multiple optima, 

we can solve the BLLP problems: once with the lower level 

objective function equal to 	%
��� + F%���� , and a second 

time with that function equal to %
��� − F%����. And optimal 

solution is obtained if it is optimal in both cases [15, 17]. 

2.3. Non-Convexity of The BLOP 

The geometric properties of the BLOPs are more complex 
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than familiar mathematical programming. For example, 

consider the BLOP with � = ���, �
� ∈ 

, �� ∈ 
, �
 ∈ 
 . 

Although its overall feasible region, G
 � � , is a convex 

polyhedron and all objectives are linear, the actual problem is 

non-convex. In Figure 1, for any fixed choice of ��, level two 

will choose the value of �
 which minimizes &
� � 	 &
��� �&

�
. This results in the rational reaction set, G�, which is 

the bold region in Figure 1. The obvious choice of ��  for 

level one is that which yields the minimum value of &�� with 

respect to the bold region. This requires the minimization of 

a linear objective function over a non-convex set. We 

conclude that the most significant characteristic of the BLOP 

is that the feasible region of the ULDM problem, G�, is non-

convex and connected [15, 17, 42, 43]. 

 

Figure 1. Non-convexity of the BLOP. 

The following theorem and its corollaries [11, 15, 17] help 

characterize both G� and the optimal solution of the upper-

level decision making problem in the bi-level linear 

programming problem. 

Theorem 1: Suppose that � � G
 � 0� � ���, �
� ∈ 
�|2��� � 2
�
 3 ., ��, �
 4 07  

is bounded. Let G� � ;?��G
�. Let H�, … , HJ  be any ) points 

of G
  and K�, … , KJ < 0  be scalars with ∑ K�J�M� � 1 , such 

that ∑ K�J�M� H� ∈ G�. Then HN ∈ G� for all " � 1,2, … , ). 

Thus theorem 1 states that any point in G
 which strictly 

contributes in any convex combinations of points in G
  to 

form a point in G�. Therefore, G� possesses a weak convex-

like property with respect to G
. 

Corollary 1: If � is an extreme point of G
 , then �  is an 

extreme point of G�. 

Corollary 2: An optimal solution to the bi-level linear 

programming problem (if one exists) occurs at an extreme 

point of the constraint set of all variables, G
. 

3. Conventional Approaches for Solving 

BLOP 

A BLOP has the important property that at least one global 

optimal solution is attained at an extreme point of the 

constraint region. This result was first established by Candler 

and Townsley [12] in 1982, for a bi-level linear decision 

making problem with no upper-level constraints and with 

unique lower-level solutions. Later Bard in 1984, Bialas and 

Karwan [15] in 1984, proved this result under the assumption 

that the constraint region is bounded. Based on these results, 

there have been many algorithms proposed for solving BLLP 

problems. These algorithms [11, 17] can be roughly classified 

into three categories: the vertex enumeration based 

approaches which use the important characteristic that at 

least one global optimal solution is attained at an extreme 

point of the constraints set; the KKT approaches in which a 

BLOP is transformed into a single level problem that solves 

the ULDM's problem while including the LLDM's optimality 

conditions as extra constraints; and the heuristics which are 

known as global optimization techniques based on 

convergence analysis. There are several methods for solving 

BLOPs. We will present only the following approaches [17]: 

1. Vertex enumeration approach: 

a) O�� Best Algorithm. 

2. Transformation Approach: 

a) Karush Kuhn-Tucker approach. 

b) Branch and bound algorithm. 

3. Fuzzy Approach. 

3.1. Vertex Enumeration Approach: Kth Best Algorithm 

Consider the BLOP Equation (1). Assume that G
  is 

bounded and a unique solution exist for LLDM problem for 

any feasible �� . From corollary �2�  a solution to ULDM 

problem must occur at an extreme point of G
  [17]. Let �P�� , �P�
 , … , �P�Q  denote the R  ordered basic feasible 

solutions to the problem: !"�#$ 	%����, �
� � 	 &�� � &���� � &�
�
 

�-./�&�	�* 

� ∈ � � 0� � ���, �
� ∈ 
�|2��� � 2
�
 3 ., ��, �
 4 0, . ∈ 
67 (2) 

such that &��P�N 3 &��P�NS� , " � 1,2, … , R = 1 . Then solving 

the ULDM problem is equivalent to finding the index O∗ �	 B" ∈ 01, … , R7C�P�N ∈ G�D  yielding the global optimal 

solution �P�T∗ . This requires finding the O∗��  best extreme 

point solution to the problem given in Equation (2). Let us 

also define the LLDM problem for a given value �� � �P���  
as: !"�#$� 	%
���, �
� � &
�	 � &
��� � &

�
 

�-./�&�	�* � ∈ �� 0� � ���, �
� ∈ 
�|2��� � 2
�
 3 ., ��, �
 4 0, . ∈ 
67 �� � �P���                                     (3) 

The search starts at the optimum of the ULDM problem. 

An overall optimal solution is reached if the upper-level 

optimum matches the lower-level one. Otherwise, search for 
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the neighboring corners of extreme points of the previous 

point until the ULDM's proposed decision match the LLDM's 

optimum. Let U  be the set of basic solutions to be 

investigated. Let U[N]  denote the set of extreme points � 

which are adjacent to �P[N] and such that &�� ≥ &��P[N]. Let V is 

the set of the basic solutions which have already been tested. 

Bialas and Karwan proposed the O�� Best algorithm with the 

following procedures [14, 15, 17]: 

Step 1: Set " = 1. Solve ULDM problem Equation (2), 

with optimal solution �P�� . Set U � B�P�N D. Set V � ∅, go to 

Step 2. 

Step 2: Solve LLDM problem Equation (3), and let �X 

denote the optimal solution. If �X � �P�N . Stop; �P�N  is a global 

optimal solution with O∗ � ". Otherwise go to Step 3. 

Step 3: Set V � V ∪ B�P�N D. Set U � ZU ∪ U�N [ ∩ V]. go 

to Step 4. 

Step 4: Set " � " � 1. Choose �P�N  so that &��P�N � !"�#$∈^ �&��. Go to Step 2. 

Computational experience with the "O�� Best" algorithm 

has demonstrated that it finds a solution easily for most 

problems, although occasionally unacceptably long time may 

be needed before a solution is found [40]. 

Illustrative Example 

This example [17] demonstrates the computational 

procedure of the O�� Best algorithm �1��	�����  !"�#$� 	%���	� � =2�� � �
 

'(�)�	�
	�*���� �2�,	�����  !"�#$� 	%
��	� � =�� = 2�
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 213�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� 4 0, �
 4 0	 e 
Solution: 

Following the above discussion, the solution procedure 

based on the O�� Best algorithm follows as: 

Step 1: Solve the upper-level problem: !"�#$	 	%���	� � =2�� � �
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 213�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� 4 0, �
 4 0	 e 
The solution is �P�� � �7.5, 1.5�, which is at vertex B in 

Figure 2. Set U � 0�7.5, 1.5�7, and set V � ∅, go to Step 2. 

Step 2: Solve the lower-level problem with �� � 7.5: 

!"�#$	 	%
��	� � =�� = 2�
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 21	3�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� � 7.5, �
 4 0e 
The solution for this problem is �X � �7.5, 4.5� , since �X 8 �P�N  go to Step 3. 

Step 3: Form the neighboring vertex set U�� �0�8,3�, �5,0�7 to the vertex B which are A and C, Figure 2. 

Set V � V ∪ B�P�� D � 0�7.5, 1.5�7  and the basic set U �ZU ∪ U�� [ ∩ V] � 0�8,3�, �5,0�7. go to Step 4. 

Step 4: Set " � " � 1 � 2 . Choose �P�
  so that &��P�
 �!"�#$∈^ � &�� , then �P�
 � �8,3� , i.e the current solution at 

vertex C, Go to Step 2. 

Step 2: Solve the lower-level problem again with �� � 8. 

The solution is �X � �8, 3� , since �X � �P�
 , the procedure 

terminates and �P�
  is the global optimal of the BLOP with 

index � � " � 2. 

 

Figure 2. Decision space of the O�� best algorithm example. 

3.2. Transformation Approaches 

The Transformation Approaches transforms the original 

BLOP into one level by treating the lower-level as constraints 

for the upper-level by using the KKT optimality conditions 

or other transformation functions. The resulting problem is 

reduced to the traditional one-level non-linear programming 

problem which is non-convex and more complex than the 

original problem. Various algorithms have been developed 

such KKT approach, branch and bound algorithm, mixed 

integer approach, Parametric Complementary Pivot 

algorithm, and many other algorithms and approaches. We 

will discuss only the first two approaches. 

3.2.1. Karush Kuhn-Tucker Approach 

The main idea of the KKT approach is that it replaces the 

LLDM problem with its KKT conditions and appends the 
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resultant system to the ULDM problem [14, 15, 17, 44]. 

For the LLDM problem: !"�#$� 	%
���, �
� = &
�	 = &
��� + &

�
 

�-./�&�	�* 

� ∈ � = 0� = ���, �
� ∈ 
�|2��� + 2
�
 ≤ ., ��, �
 ≥ 0, . ∈ 
67 (4) 

The KKT conditions are: 2��� + 2
�
 + � = . -2
 − � = &

 -� = -�. − 2��� − 2
�
� = 0 ��
 = 0, ��, �
, -, �, � ≥ 0                         (5) 

where -  and �  are Lagrange multipliers and �  is a slack 

variable. Then the BLOP can be equivalently written as in the 

following proposition [17, 44]. 

Proposition 1: A necessary condition that ���∗, �
∗� solves 

the bi-level linear programming problem in Equation (1), is 

that there exist (row) vectors -∗  and �∗  such that ���∗, �
∗, -∗, �∗� solves [11, 44]: !"�#$ 	%����, �
� = 	 &�� = &���� + &�
�
 

�-./�&�	�* 2��� + 2
�
 + � = . -2
 − � = &

 -� = -�. − 2��� − 2
�
� = 0 ��
 = 0, ��, �
, -, �, � ≥ 0                       (6) 

The above problem in Equation (6), is non-linear with 

complementary constraints: 	��
 = 0  and -� = 0 . Fortuny 

and McCarl [13] in 1981 reformulated the complementary 

slackness conditions by introducing a 0 − 1 vector h  and a 

very large positive constant i. Thus, a mixed integer 0 − 1 

programming problem can be obtained as: !"�#$ 	%����, �
� = 	 &�� = &���� + &�
�
 

�-./�&�	�* 2��� + 2
�
 + � = . -2
 − � = &

 - ≤ i�1 − h�� �
 ≤ i�1 − h
� � ≤ ih� � ≤ ih
 ��, �
, -, �, � ≥ 0, j�,	h�, h
 ∈ 00,17                (7) 

Compared to Equation (6), the non-linear term disappeared 

and is replaced by two linear inequalities for more details see 

[14, 17]. 

Illustrative Example 

The previous example is considered here to illustrate the 

computational procedure of the KKT approach. [1��	�����] !"�#$� 	%���	� = −2�� + �
 

'ℎ�)�	�
	�*���� [2�,	�����] !"�#$� 	%
��	� = −�� − 2�
 

�-./�&�	�* 

� ∈ �	 = _� = ���, �
�`3�� − 5�
 ≤ 15, 3�� − �
 ≤ 213�� + �
 ≤ 27, 3�� + 4�
 ≤ 45�� + 3�
 ≤ 30, �� ≥ 0, �
 ≥ 0	 e 
Solution: 

Using Equation (7), the BLOP becomes: !"�#$	 	%���	� = −2�� + �
 

�-./�&�	�* 3�� − 5�
 +	�� = 15, 3�� − �
 + �
 = 21, 3�� + �
 + �k = 27, 3�� + 4�
 + �l = 45 �� + 3�
 + �m = 30, �� ≤ ih�, -� ≤ i�1 − h�� �
 ≤ ih
, -
 ≤ i�1 − h
� �k ≤ ihk, -k ≤ i�1 − hk� �l ≤ ihl, -l ≤ i�1 − hl� �m ≤ ihm, -m ≤ i�1 − hm� � ≤ ihn, �
 ≤ i�1 − hn� −5-� − -
 + -k + 4-l + 3-m − � = −2 �� ≥ 0, �
 ≥ 0, � ≥ 0, �N ≥ 0, -N ≥ 0, " = 1,2,3,4,5. hN ∈ 00,17, " = 1,2, … ,6 

Solving this model using "LINGO programming" with the 

large constant i = 10000 , the solution obtained is ���, �
� = �7.5, 1.5�, %� = −13.5	j�,	%
 = −10.5 , the 

problem also solved with i = 100,000,i = 1,000,000, j�,	i = 10,000,000 . The 

solution remains the same. 
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3.2.2. Branch and Bound Algorithm 

Among the many approaches for solving the BLOP, the 

branch and bound algorithm appears to be one of the more 

effective approaches among the traditional optimization 

techniques. Fortuny-Amat and McCarl [13] in 1981 

suggested using branch and bound to solve a BLOP, and Bard 

and Moore [17] in 1990 successfully utilized this approach 

for solving BLOP. To formulate the algorithm, [17, 27] let us 

write Equation (6), as: !"�#$ 	%����, �
� = 	 &�� = &���� + &�
�
              (8) 

�-./�&�	�* 2��� + 2
�
 ≤ .�                              (9) -�2
 −	-
 = &

                              (10) -��. − 2��� − 2
�
� + -
�
 = 0                 (11) ��, �
, -�, -
 ≥ 0                               (12) 

where -N , " = 1, … ,! + �
 , are Lagrange multipliers, and 

note that complementary slackness (11) simply means -NpN���, �
� = 0, " = 1,… ,! + �
 , where pN���, �
� 

represent all the inequalities (except of the leader's variables) 

of Equation (6). The basic idea is to suppress the 

complementary term (11) and solve the resulting linear sub-

problem. At each iteration, a check is made to determine 

whether both complementary slackness conditions are 

satisfied. If so, the corresponding point is feasible. 

Otherwise, a branch-and-bound scheme is used to implicitly 

examine all combinations of complementary slackness. 

Let U = 0" = 1,… ,! + �
7 be the index to the terms in 

the complementary equation, let %�̅ be the incumbent upper 

bound on the ULDM's objective function. At the ��ℎ level of 

the search tree we define a subset of indices	Ur ⊂ U, and a 

path sr  corresponding to an assignment of either -N = 0 or pN = 0 for " ∈ Ur. Now let GrS = 0"|" ∈ Ur , -N = 07 Grt = 0"|" ∈ Ur , pN = 07 Gru = 0"|" ∉ Ur7 
For " ∈ Gru , the variables -N  or pN  are assume any 

nonnegative value in the solution of model in Equation (8-

12), without the complementary term �11� , so 

complementary slackness will not necessarily be satisfied. 

The proposed procedure is summarized in the following Bard 

and Moore in 1990 [11, 17, 27]: 

Step 1: (Initialization). Set � = 0, GrS = ∅, Grt = ∅, Gru =01,… ,! + �
7, and %�̅ = ∞. 

Step 2: (Iteration �). Set -N = 0 for " ∈ GrS and pN = 0 for " ∈ Grt. Attempt to solve Equation (8-12), without (11) if the 

solution is infeasible, go to Step 6. Otherwise, put � = � + 1 

and label the solution as ���r, �
r , -r�, go to Step 3. 

Step 3: (Fathoming). If %����, �
� ≥ %�̅, go to Step 5. 

Otherwise, go to the next step. 

Step 4: (Branching). If -NrpN���r, �
r� = 0, " = 1,… ,! +

�
, go to Step 5. Otherwise, select " for which -NrpN���r, �
r� ≠ 0 is the largest and label it "�. Put GrS ←GrS ∪ 0"�7, Gru ←	Gru ∖ 0"�7, Grt ← Grt, append "� to sr, go to 

Step 2. 

Step 5: (Updating). %�̅ ←	%����r, ��r�, go to the next step. 

Step 6: (Backtracking). If no live node exists, go to Step 7. 

Otherwise, branch to the newest live vertex and update GrS, Grt, Gru and sr, go to Step 2. 

Step 7: (Termination). If %�̅ = ∞, there is no feasible 

solution to the BLOP. Otherwise, declare the feasible point 

associated with %�̅ the optimal solution. 

Illustrative Example 

The numerical example is considered here to illustrate the 

computational procedure of the branch and bound algorithm 

[44]. [1��	�����] !"�#$	 	%���	, H� = � − 4H 

'ℎ�)�	H	�*���� [2�,	�����] !"�#z 	%
��	, H� = � + H 

�-./�&�	�* −� − H ≤ −3,−3� + 2H ≥ −4, −2� + H ≤ 0, 2� + H ≤ 12	� ≥ 0, H ≥ 0. 
Solution: 

The transformed problem, Equation (8-12), without the 

complementary slackness term, (11) is as follows: !"�#$	 	%���	, H� = � − 4H 

�-./�&�	�* −� − H ≤ −3, −3� + 2H ≥ −4, −2� + H ≤ 0, 2� + H ≤ 12, −-� − 2-
 + -k + -l −	-m = −1, � ≥ 0, H ≥ 0, -N ≥ 0, " = 1,2, … ,5. 
and the complementary slackness product terms are: -��−� − H + 3� = 0 -
�−3� + 2H + 4� = 0 -k�−2� + H� = 0 -l�2� + H − 12� = 0 -mH = 0 
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At each iteration, a check is made to check the condition -NpN��, H� � 0,  the initial feasible solution for the 

transformed problem without the complementary slackness 

product terms using "LINGO programming" is ��, H� ��3,6�, - � �0,0.5,0,0,0�, with %� � =21. This point does not 

satisfy the condition	-NpN��, H� � 0, so branching variable is �-
� , so G�S � 027, G�t � ∅, G�u � 01,3,4,57  and s� � 027 . In 

the next two iterations, the algorithm branches 	-�	j�,	-m , 

respectively. The index set are G
S � 02,17, G
t � ∅, G
u �03,4,57 and s
 � 02,17. The condition does not satisfy then 

branching on -m  the sets are GlS � 02,17, Glt � 057, Glu �03,47 and sl � 02,1,57 this turn out to be infeasible. Then the 

algorithm backtracks and update the sets GmS � 027, Gmt �017, Gmu � 03,4,57 and sm � 01,57, a feasible solution is found 

but fathoming due to optimality backtracking and update the 

sets GnS � ∅, Gnt � 027, Guu � 01,3,4,57  and sn � 027 . The 

optimal solution occurring at the point ��∗, H∗� ��4,4�, �-�∗, -
∗ , -k∗ , -l∗ , -m∗� � �0,0.5,0,0,0�  with %� � =12 

and 	%
 � 8 . The full branch and bound tree is shown in 

Figure 3. 

 

Figure 3. Search tree for the previous Example. 

3.3. Fuzzy Approach 

While most existing methods are computationally 

inefficient, a fuzzy approach which uses the membership 

function of fuzzy set theory as well as multi-objective 

optimization is developed for solving the BLOP [17, 19, 25]. 

In this approach, the ULDM specifies preferred values of 

his/her decision variables and goals with some leeway or 

tolerance. This information is represented by the use of 

membership functions of fuzzy set theory and passed to the 

LLDM. The LLDM should not only optimize his or her 

objective but also try to satisfy the ULDM's goal and 

preference as much as possible. He or she realizes that 

without seriously considering the leader's goal and 

preference, the proposed solution will very possibly be 

rejected and the solution search will be lengthy one. The 

LLDM then presents his or her solution to the ULDM. If the 

ULDM agrees to the proposed solution, a solution is reached 

and it is called a satisfactory solution. If he/she rejects the 

proposed solution, the ULDM will need to re-evaluate and 

changes the goals and decisions as well as their leeway or 

tolerance until a satisfactory solution is reached [17, 19, 25]. 

Mathematically, the ULDM first solves the following 

problem: !"�#$ 	%����, �
� � 	 &�� � &���� � &�
�
 

�-./�&�	�* � ∈ � � 0� � ���, �
� ∈ 

|2��� � 2
�
 3 ., ��, �
 4 07 (13) 

the solution of which is assumed as ���{, �
{, %�{� . 

Independently, the LLDM solves: !"�#$ 	%
���, �
� � &
�	 � &
��� � &

�
 

�-./�&�	�* � ∈ � � 0� � ���, �
� ∈ 

|2��� � 2
�
 3 ., ��, �
 4 0, 7 (14) 

whose solution is assumed to be ���| , �
| , %
|� . These two 

solutions are then compared. If ���{, �
{� � ���| , �
| �, then an 

optimal solution is obtained. However, the two solutions are 

usually different because of the conflicting nature of the two 

objectives. The upper-level then reassesses his/her tolerances 

or vagueness by assuming that the value of ��{  should be 

"around ��{" instead of exactly at ��{ with tolerance interval 

between ���{ = ��, ��{  and ���{, ��{ � �� . In other words, the 

most desirable decision is at ��{  and the most undesirable 

decision is at the boundary of the interval [17]. Decisions 

outside the interval are not acceptable. Thus, the following 

triangular membership functions Figure 4b based on the 

degree of tolerance of the ULDM can be formulated [17, 19, 

25]: 

}$����� �
~��
��$�tZ$��t��[�� , "%	��{ = �� 3 �� 3	��{Z$��S��	[t$��� , "%	��{ 	3 �� 3 ��{ � ��0, *�(�)'"��	

          (15) 

The ULDM also must adjust his/her goal by assuming the 

highest tolerable goal, %�u , based on the vagueness of the 

decentralized organization. Thus, all values of %�  with %� 3 %�{ � %�� are absolutely acceptable and all values of %� 

with %� < %�u  are absolutely unacceptable, and that the 

preference within �%��, %�u  is linearly decreasing as in Figure 

4a. Based on this interval of tolerance, we can establish the 

following linear membership function can now be assumed 

as [17, 19, 25]: 

}?�Z%����[ � � 0, "%	%���� 4 	%�u	?��$�t?��?��t?�� 	"%	%�u 3 %���� 3 %��1, "%	%���� 3 	%��	             (16) 
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Figure 4. Membership functions: a) Linear b) Triangular. 

The lower-level also reassesses his/her goal by setting the 

highest tolerable goal %
u. Thus, the membership function for 

the goal of the lower-level can be obtained as follows: 

}?�Z%
���[ = � 0, "%	%
��� 4 	%
u	?��$�t?��?��t?�� 	"%	%
u 3 %
��� 3 %
�1, "%	%
��� 3 	%
�	           (17) 

The above membership function linearly decreases from 1 

at %
 � �%
| ≡ %
��  to 0  at %
 � %
u . Let this membership 

function be represented by � with 0 3 � 3 1, which can be 

considered as the degree of satisfaction. Similar degrees of 

satisfactions can also be defined for the upper-level. Let � 

and �  represent the degrees of satisfactions for the upper-

level's decisions and goal, respectively. In order to satisfy all 

the degrees of satisfactions, we must find the minimum �, � 

and � simultaneously. Thus, we obtain the following overall 

satisfactory level [19, 25]: K � !"�	0�, �, �7                                   (18) 

Thus, Equation (18), must be maximized in order to obtain 

the best degree of satisfaction. Thus, we have the following 

Multi-Objective Programming (MOP) problem: !j�	K � !j��!"�	0�, �, �7� �-./�&�	�* 2��� � 2
�
 3 . }$����� 4 � 

}?�Z%����[ 4 � 

}?�Z%
���[ 4 � �, �, � ∈ �0,1 , �� 4 0, �
 4 0                   (19) 

substituting the membership functions, for more details see 

[17, 19, 25], which are represented by Equations (15-17) into 

Equation (19) we have: !j�	K �-./�&�	�* 2��� � 2
�
 3 . �� = ���{ = ��� ��⁄ 4 K ���{ � ��	� = �� ��⁄ 4 K 

}?�Z%����[ � �%���� = %�u� �%�� = %�u�⁄ 4 K 

}?�Z%
���[ � �%
��� = %
u� �%
� = %
u�⁄ 4 K K ∈ �0,1 , �� 4 0, �
 4 0                     (20) 

This MOP problem can be solved in many different ways 

depending on the used algorithm. 

Illustrative Example 

The numerical example studied in [17] is considered here 

to illustrate the computational procedure for fuzzy approach. �1��	�����  !"�#$� 	%���	� � =2�� � �
 

'(�)�	�
	�*���� �2�,	�����  !"�#$� 	%
��	� � =�� = 2�
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 213�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� 4 0, �
 4 0	 e 
Solution: 

Firstly, solve the ULDM problem as follows: !"�#$	 	%���	� � =2�� � �
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 213�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� 4 0, �
 4 0	 e 
The solution obtained is 	���{ , �
{� � �7.5,1.5�  with %�{ � 13.5. then solve the lower-level problem as follows: !"�#$� 	%
��	� � =�� = 2�
 

�-./�&�	�* 

� ∈ �	 � _� � ���, �
�`3�� = 5�
 3 15, 3�� = �
 3 213�� � �
 3 27, 3�� � 4�
 3 45�� � 3�
 3 30, �� 4 0, �
 4 0	 e 
The solution obtained is 	���| , �
| � � �3,9�  with %�{ � 21 . 

As	���{, �
{� 8 ���| , �
| �, hence following the above discussion 

and formulate the membership functions for the upper-level 

objectives, lower-level objectives and upper-level decision 

variable. Let the upper-level DM decide ��{ � 7.5 and with 

positive tolerance limits �� � 1 , one-sided membership 

function [17, 19, 28]. 

}?�Z%����[ � =2�� � �
 = 10=13.5 = 10  
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= 0.085�� − 0.0426�
 + 0.426 ≥ � 

}?�Z%
���[ = −�� − 2�
 − 0−21 − 0 = 0.048�� + 0.095�
 ≥ � 

}$����� = �7.5 + 1	� − ��1 = 8.5 − �� ≥ � 

Construct the model in Equation (19), as follows: !j�	K �-./�&�	�* 0.085�� − 0.0426�
 + 0.426 ≥ K, 0.048�� + 0.095�
 ≥ K, 8.5 − �� ≥ K, 3�� − 5�
 ≤ 15, 3�� − �
 ≤ 21,3�� + �
 ≤ 27, 3�� + 4�
 ≤ 45,�� + 3�
 ≤ 30, �� ≥ 0, �
 ≥ 0, K ∈ [0,1]	 
Thus the satisfactory solution is achieved at ���∗, �
∗� =�7.313,5.062�  with the overall satisfactory level K =0.8319. 

4. Bi-level Multi-Objective Programming 

For real world cases, decision making often has multi-

objective characteristics, which have been studied in single 

level decision making, but only a few studies have been 

conducted in bi-level decision making situations by Wen & 

Hus [42]. The BL-MODM problem may be formulated as 

follows [1-3, 11, 31]: [1��	�����] !"�#$� 	�����, �
�
= 	!"�#$� �%�����, �
�, %�
���, �
�, … , %�6����, �
��, 

'ℎ�)�	�
	�*���� [2�,	�����] !"�#$� 	�
���, �
�
= 	!"�#$� �%
����, �
�, %

���, �
�, … , %
6����, �
��, 

�-./�&�	�* 

� ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                (21) 

where 

%N���� = &��N� ��� + &�
N� ��
 + ⋯	+ &���N� ���� + &
�N� �
� + &

N� �

 + ⋯+ &
��N� �
�� , ∀	" = 1,2. / = 1,2, … ,!N 
and where !N, " = 1,2  are the number of DMj's objective 

functions, !  is the number of constraints, &rN� =�&r�N� , &r
N� , … , &r��N� � , � = 1,2 and &r��N�
 are constants, 2N are the 

coefficient matrices of size ! × �N , " = 1,2 ., the control 

variables �� = Z���, ��
, … , ����[  and �
 = Z�
�, �

, … , �
��[ , 

and � is the bi-level convex constraints feasible choice set. 

Definition 4: For any ����� ∈ �� = 0��|���, �
� ∈ �7� 

given by the ULDM, if the decision variable �
	��
 ∈ �� =0�
|���, �
� ∈ �7�  at the lower-level is the non-inferior 

solution of the LLDM, then ���, �
� is a feasible solution of 

the BL-MODM problem [3, 40]. 

Definition 5: If ���, �
� is a feasible solution of the BL-

MODM problem; no other feasible solution ��̅�, �̅
� ∈ � 

exist, such that %����̅�, �̅
� ≤ %�����, �
� ; at least one / �/ = 1,2, … ,!�� is strict inequality, then ���, �
� is the non-

inferior solution of the BL-MODM problem [2, 22, 40]. 

4.1. FGP Formulation 

In BL-MODM problems, if an imperious aspiration level 

is assigned to each of the objectives %N����, " = 1,2, / =1,2, … ,!N, then these fuzzy objectives are termed as fuzzy 

goals. They are characterized by their associated membership 

functions by defining the tolerance limits for achievement of 

their aspired levels. The fuzzy goals of the objectives are 

determined by determining individual optimal solutions. The 

fuzzy goals are then characterized by the associated 

membership functions which are transformed into fuzzy 

flexible membership goals by means of introducing over- and 

under-deviational variables and assigning highest 

membership value (unity) as aspiration level to each of them. 

To elicit the membership functions of the decision vectors 

controlled by the ULDM, the optimal solution of the upper-

level MOP problem is separately determined. A relaxation of 

the decisions is considered to avoid decision deadlock [28, 

30, 31]. 

4.1.1. Construction of Membership Functions 

Let (���� , �
��; %��6N� , / = 1, … ,!�) and (��
�, �

�; %
�6N� , / =1, … ,!
 ) be the optimal solutions of ULDM and LLDM 

objective functions, respectively, when calculated in 

isolation. Let �N� ≥ %N�6N� be the aspiration level assigned to 

the "/�ℎ objective %N����, �
�. Then, the fuzzy goals [30, 31]: %N����, �
� ≲ �N� , " = 1,2, / = 1,2, … ,!N, �� ≅ ��∗          (22) 

Therefore, it can be assumed that the values %N����, �
� ≥%N�6N� and all values greater than Z-N�[ = !j�	%N����, �
� are 

absolutely unacceptable to each objective function. Then the 

membership functions }� ≡ }?�� �%N����, �
��  for the 	"/�ℎ 

fuzzy goal can be formulated as follows see Figure 5a: 
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}� = ~�
� 1, "%	%N���� 3 �N� 	{��	t?���$�,$��{��	– �� , "%	�N� 3 %N���� 3 -N� 	" � 1,2, / � 1,… ,!N	0, "%	%N���� 4 -N� 	 	 (23) 

To build these membership functions, the optimal solution �∗ � ���∗, �
∗�  of the upper-level MOP problem [24, 37], 

should be determined first. The FGP approach of Mohamed 

[45], is considered to solve the upper-level MOP problem 

follows as [28, 31]: 

min ¤ � ¥'��S 	,��S
6�
�M�  

�-./�&�	�* 

}?�� �%�����, �
�� �	,��t = ,��S � 1, / � 1,2, … ,!�, 

2��� � 2
�
 ¦3�4§., ��, �
 4 0 

,��t , ,��S 4 0,'"�(	,��t 	,��S � 0, / � 1,2, … ,!�   (24) 

where ,��t , ,��S , / � 1,2, … ,!� represent the under- and over-

deviations from the aspired levels, and the numerical weights '��S , / � 1,2, … ,!� represented as: 

'��S � �{��t �� , / � 1,2, … ,!�                   (25) 

The linear membership functions }
 ≡ }$�����r�  for the 

decision vector �� � Z���, ��
, … , ����[  can be formulated as 

follows see Figure 5b: 

}
 ≡ }$��Z��r[ �
~��
�� $��t�$��∗t��̈���̈ , "%	��r∗ = �r© 3 ��r 3 ��r∗	

�$��∗S��ª�t$����ª , "%	��r∗ 3 ��r 3 ��r∗ � �r�, � � 1,… , ��		0, *�(�)'"��	
                                             (26) 

 

Figure 5. Membership functions: a) Linear b) Triangular. 

4.1.2. FGP Model 

In decision making situation, the aim of each DM is to 

achieve highest membership value (unity) of the associated 

fuzzy goal in order to obtain the satisfactory solution as [31, 

30, 33]: 

}?�� �%N����, �
�� �	,N�t = ,N�S � 1, " � 1,2	/ � 1,2, … ,!N (27) 

}$��Z��r[ �	,rt = ,rS � 1, � � 1,2,… , ��             (28) 

Or equivalently as: 

{��	t?���$�,$��{��	– �� �	,N�t = ,N�S � 1, " � 1,2	/ � 1,2, … ,!N (29) 

$��t�$��∗t��̈���̈ � ,r©t = ,r©S � 1, � � 1,2, … , ��       (30) 

�$��∗S��ª�t$����ª � ,r�t = ,r�S � 1, � � 1,2, … , ��       (31) 

where ,rt � �,r©t, ,r�t� , ,rS � �,r©S, ,r�S� , and ,N�t , ,r©t, ,r�t, ,N�S , ,r©S, ,r�S 4 0  with ,N�t 	,N�S � 0 , ,r©t	,r©S �0, and ,r�t	,r�S � 0 represent the under- and over deviation, 

respectively, from the aspired levels. 

In conventional GP, the under- and/or over-deviational 

variables are included in the achievement function for 

minimizing them and also depend up on the type of objective 

functions to be optimized [31-33]. In this approach, the over-

deviational variables for the fuzzy goals of the objective 

functions, ,N�S , " � 1,2	/ � 1,2, … ,!N , and the over-

deviational and under deviational variables for the fuzzy 

goals of the decision variables, ,r©t, ,r�t, ,r©S and ,r�S , are 

required to be minimized to achieve the aspiration level of 

the fuzzy goals [29]. 

To assess the relative importance of the fuzzy goals 

properly, the weighting scheme suggested by Mohamed [45] 

is used to assign the values to 'N�S, 'r© 	j�,	'r�. These values 

are determined as: 

'N�S � �{��t �� , " � 1,2	/ � 1,2, … ,!N             (32) 

'r© � ���̈ , j�,	'r� � ���ª , � � 1,2, … , ��           (33) 

The FGP model for solving the BL-MODM problem 

follow as [31-33]: 

min¤ � ¥'��S 	,��S � ¥'
�S ,
�S �6�
�M� ¥«'r©Z,r©t � ,r©S[ � 'r�Z,r�t � ,r�S[¬��

rM�
6�
�M�  
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 �-./�&�	�* 

}?�� �%�����, �
�� +	,��t − ,��S = 1, / = 1,2, … ,!�, 
}?�� �%
����, �
�� +	,
�t − ,
�S = 1, / = 1,2, … ,!
, }$�����r� + 	,rt − ,rS = 1, � = 1,2, … , �� 

2��� + 2
�
 ¦≤=≥§., ��, �
 ≥ 0 

,N�t , ,N�S ≥ 0,'"�ℎ	,N�t 	,N�S = 0, " = 1,2	/ = 1,2, … ,!N ,rt, ,rS ≥ 0,'"�ℎ	,rt,rS = 0                         (34) 

The above problem can be rewritten as [31]: 

!"�	¤ = ¥'��S 	,��S + ¥'
�S ,
�S +6�
�M� ¥['r©�,r©t + ,r©S� + 'r��,r�t + ,r�S�]��

rM�
6�
�M�  

�-./�&�	�* -��	 − %�����, �
�-�� 	− 	��� +	,��t − ,��S = 1, / = 1,2, … ,!�, 
-
�	 − %
����, �
�-
� 	− 	�
� +	,
�t − ,
�S = 1, / = 1,2, … ,!
, 
��r − Z��r∗ − �r©[�r© + ,r©t − ,r©S = 1, � = 1,2, … , �� 

Z��r∗ + �r�[ − ��r�r� + ,r�t − ,r�S = 1, � = 1,2, … , �� 

2��� + 2
�
 ¦≤=≥§., ��, �
 ≥ 0 

,N�t , ,N�S ≥ 0,'"�ℎ	,N�t 	,N�S = 0, " = 1,2	/ = 1,2, … ,!N ,r©S, ,r©t ≥ 0,'"�ℎ	,r©S	,r©t = 0, � = 1,2, … , �� ,r�S, ,r�t ≥ 0,'"�ℎ	,r�S	,r�t = 0, � = 1,2, … , ��     (35) 

where ¤  represents the fuzzy achievement function 

consisting of the weighted over-deviational variables ,N�S  of 

the fuzzy goals �N�  and the under-deviational and the over-

deviational variables ,r©t, ,r�t, ,r©S	j�,	,r�S, � = 1,2, … , �� 

for the fuzzy goals of the decision variables ���, ��
, … , ���� , 

where the numerical weights 'N�S, 'r©	j�,	'r�  represent the 

relative importance of achieving the aspired levels of the 

respective fuzzy goals subject to the constraint set in the 

decision situation. 

4.1.3. The FGP Algorithm for Solving The BL-MODM 

Problem 

Following the above discussion, the proposed FGP 

algorithm for solving the BL-MOP problem follows as [31]: 

Step 1: Calculate the individual maximum and minimum 

values of each objective function in the two levels under the 

given constraints. 

Step 2: Set the goals and the upper tolerance limits for all 

the objective function in the two levels. 

Step 3: Evaluate the weights 'N�S = 1 -N� − �N�⁄ , " =1,2	/ = 1,2, … ,!N. 

Step 4: Elicit the membership functions }?�� �%������, / = 1,2, … ,!�, for each of the objective functions in the 

upper-level. 

Step 5: Formulate the Model �24� for the MOP problem of 

the upper-level. 

Step 6: Solve the Model �24� to get �∗ = ���∗, �
∗�, ��∗ =����∗ , ��
∗, … , ����∗�. 

Step 7: Set the maximum negative and positive tolerance 

values on the decision vector ��∗ = Z���, ��
, … , ����[, �r©	j�,	�r�, � = 1,2, … , ��. 

Step 8: Elicit the membership functions }$�����r� for the 

decision vector �� = Z���, ��
, … , ����[. 

Step 9: Elicit the membership functions }?�� �%
����� , / =1,2, … ,!
, for each of the objective functions in the lower-

level. 

Step 10: Evaluate 'r© = 1 �r©⁄ 	j�,	'r� = 1 �r�⁄ , � =1,2, … , ��. 
Step 11: Formulate the Model �35� for BL-MOLP 

problem. 

Step 12: Solve the Model �35� to get the candidate 

solution of the BL-MOP problem. 

Step 13: If the DM is satisfied with the candidate solution 

in Step12, go to Step 15, otherwise go to Step 14. 

Step 14: Modify the goals and the upper tolerance limits �N� , -N� , " = 1,2	/ = 1,2, … ,!N for all objective functions in 

the two levels, go to Step3. 

Step 15: Stop with the satisfactory solution of the BL-

MOLP problem. 

4.2. The TOPSIS Approach 

TOPSIS provides a broader principle of compromise for 

solving MCDM problems. It transfers �  objectives 

(criteria), which are conflicting and non-commensurable, 

into two objectives (the shortest distance from the PIS and 

the longest distance from the NIS). They are 

commensurable and most of time conflicting. Then, the bi-

objective problem can be solved by using membership 

functions of fuzzy set theory to represent the satisfaction 

level for both criteria and obtain TOPSIS’s compromise 

solution by a second-order compromise. The max–min 

operator is then considered as a suitable one to resolve the 

conflict between the new criteria (the shortest distance 
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from the PIS and the longest distance from the NIS) [37, 

46, 47]. 

4.2.1. The TOPSIS Approach for the Upper-Level MOP 

Problem 

Consider the upper-level multi-objective of minimization 

type problem of the BL-MODM problem as: 

!"�#$� 	�����, �
� 

=	!"�#$� �%�����, �
�, %�
���, �
�, … , %�6����, �
��, 
�-./�&�	�* 

x ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                     (36) 

the TOPSIS approach of Lai et al. [48] that solves single-level MODM problems is considered to solve the upper-level MOP 

problem. The TOPSIS model formulation of this approach can be follows as: !"�	,®®¯°���� !j�	,®Q¯°���� �-./�&�	�* 

� ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                                      (37) 

where 

,®®¯°���� = ±∑ '�² ³?���$�t?��∗ 	?��́t?��∗ µ²6��M� ¶�·
                  (38) 

,®Q¯°���� = ±∑ '�² ³?��́t?���$�	?��́t?��∗ µ²6��M� ¶�·
                  (39) 

where %��∗ = !"�#$∈¸ %����� , is the individual positive ideal 

solutions, %��t = !j�#$∈¸ %�����, is the individual negative ideal 

solutions and '� , / = 1,… ,!� , is the relative importance 

(weights) of objectives. Let �{∗ = Z%��∗ , %�
∗ , … , %�6�∗ [  and �{´ = Z%��t , %�
t , … , %�6�t [ . Assume that the membership 

functions }���� and }
��� of the two objective functions are 

linear between Z,²{[∗
 and Z,²{[t

 which are: 

Z,®®¯°�[∗ = !"�#$∈¸ 	,®®¯°���� and the solution is �®     (40) 

Z,®Q¯°�[∗ = !j�#$∈¸ 	,®Q¯°���� and the solution is �Q    (41) 

Z	,®®¯°�[t =	,®®¯°���Q� and Z	,®Q¯°�[t =	,®Q¯°���®�  (42) 

Also, as proposed in [34, 37] by A. Baky that Z	,®®¯°�[t
 

and Z	,®Q¯°�[t
 can be taken as Z	,®®¯°�[t = !j�#$∈¸ 	,®®¯°���� 

and Z	,®Q¯°�[t = !"�#$∈¸ 	,®Q¯°���� , respectively. Let ,®{∗ =
�Z	,®®¯°�[∗, Z	,®Q¯°�[∗	�  and ,®{´ = ZZ	,®®¯°�[t, Z	,®Q¯°�[t	[ . 

Thus If we assume that the membership functions }���� ≡}¹ºº»¼���� and }
��� ≡ }¹º½»¼���� then it can be obtained as: 

}���� =
~��
�� 1, "%	,®®¯°���� < Z	,®®¯°�[∗	
1 − ¹ºº»¼��$�t�	¹ºº»¼��∗

Z	¹ºº»¼�[´tZ	¹ºº»¼�[∗ , "%	Z	,®®¯°�[∗ ≤ ,®®¯°���� ≤ Z	,®®¯°�[t
0, "%	Z	,®®¯°�[t <	,®®¯°����	

	                                     (43) 

}
��� =
~��
�� 1, "%	,®Q¯°���� > Z	,®Q¯°�[∗	
1 − 	�	¹º½»¼��∗t	¹º½»¼��$��	¹º½»¼��∗t�	¹º½»¼��´ , "%	Z	,®Q¯°�[t ≤ ,®Q¯°���� ≤ Z	,®Q¯°�[∗

0, "%	,®Q¯°���� < Z	,®Q¯°�[t	
	                                    (44) 

Thus, resolve the model in Equation (37) and obtaining the 

satisfying decision of the upper-level MOP problem, �∗ = ���∗, �
∗�, by solving the following problem: }¿��� = !j�#$∈¸ 	B!"�Z}����, }
���[D                   (45) 

Thus, by introducing a variable � = !"�Z}����, }
���[, 

model of Equation (37) is equivalent to the form of 

Tchebycheff model, for more details see [48, 49], which is 

equivalent to the following model: !j�	� �-./�&�	�* }���� ≥ �, }
��� ≥ �, � ∈ [0,1], 
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 � ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                       (46) 

where � is the overall satisfactory level for both criteria of the shortest distance from the PIS and the farthest distance from the 

NIS. According to this concept, the linear membership functions for each of the ��  components of decision vector ��∗ =����∗ , ��
∗, … , ����∗� controlled by the ULDM can be formulated as [34]: 

}$�����r� =
~��
�� $��t�$��∗t��̈���̈ , "%	��r∗ − �r© ≤ ��r ≤ ��r∗ 																										

�$��∗S��ª�t$����ª , "%	��r∗ ≤ ��r ≤ ��r∗ + �r�, � = 1,… , ��		0, *�ℎ�)'"��																																																																													
	                                   (47) 

4.2.2. The TOPSIS Approach for the BL-MODM Problem 

In order to obtain a compromise solution (satisfactory solution) to the BL-MODM problem using the TOPSIS approach, the 

distance function from the positive and the negative ideal solution,	,®®¯°À
 ,®Q¯°À

, as follows [34, 37]: 

,®®¯°À��� = ±∑ '��² ³?���$�t?��∗ 	?��́t?��∗ µ² + ∑ '
�² ³?���$�t?��∗ 	?��́t?��∗ µ²6��M� 	6��M� ¶�·
                                     (48) 

,®Q¯°À��� = ±∑ '��² ³?��́t?���$�?��́t?��∗ µ²6��M� + ∑ '
�² ³?��́t?���$�?��́t?��∗ µ²6��M� 	¶�·
                                     (49) 

where 'r , � = 1,2, … ,!� + !
  are the relative importance 

of objectives in both levels. %N�∗ = !"�#$∈¸ %N����, %N�t =!j�#$∈¸ %N����, " = 1,2, / = 1,2, … ,!N , and Á = 1,2, … ,∞ . Let 

�∗ = Z%��∗ , %�
∗ , … , %�6�∗ , %
�∗ , %

∗ , … , %
6�∗ [ , and �t =Z%��t , %�
t , … , %�6�t , %
�t , %

t , … , %
6�t [. 

In order to obtain a compromise solutions, the problem is 

transferred into the following bi-objective problem with two 

commensurable (but often conflicting) objectives [46-48, 

50]: 

!"�	,®®¯°À��� 

!j�	,®Q¯°À��� �-./�&�	�* 

� ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                         (50) 

Assume that the membership functions }k��� ≡ }¹ºº»¼À��� and }l��� ≡ }¹º½»¼À���can be obtained as follows [48]: 

}k��� =
~�
�
�� 1	"%	,®®¯°À��� > �	,®®¯°À�∗	
1 − ¹ºº»¼À�$�tÂ	¹ºº»¼ÀÃ∗

�	¹ºº»¼À�´t�	¹ºº»¼À�∗ 	"%	 �	,®®¯°À�∗ ≤ ,®®¯°À��� ≤ �	,®®¯°À�t
0	"%	 �	,®®¯°À�t <	,®®¯°À���	

	                                         (51) 

}l��� =
~�
�
�� 1	"%	,®Q¯°À��� > �	,®Q¯°À�∗	
1 − 	Â	¹º½»¼ÀÃ∗t	¹º½»¼À�$�

�	¹º½»¼À�∗t�	¹º½»¼À�´ 	"%	 �	,®Q¯°À�t ≤ ,®Q¯°À��� ≤ �	,®Q¯°À�∗
0	"%	,®Q¯°À��� < �	,®Q¯°À�t	

	                                         (52) 

To obtain the compromise solution �∗ = ���∗, �
∗�, of model in Equation (48-49) Applying the max-min decision model of 

Bellman and Zadeh [43] as follows: }¿��� = !j�#$∈¸ 	B!"�Z}k���, }l���[D                                                             (53) 

If � = !"�Z}k���, }l���[, the model in Equation (50) is equivalent to the following model [19, 43, 46, 47, 50]: 
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!j�	� �-./�&�	�* }k��� ≥ �, }l��� ≥ �, � ∈ [0,1], 
� ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                          (54) 

where	� is the satisfactory level for both criteria. It is well 

known that if the optimal solution of the model in Equation 

(54) is the vector ��, ��∗, �
∗�. 

The final proposed model can be obtained as [34, 37]: !j�	� �-./�&�	�* 

1 − ,®®¯°À��� − �	,®®¯°À�∗
Z	,®®¯°À[t − Z	,®®¯°À[∗ ≥ �, 

1 − 	�	,®Q¯°À�∗ −	,®Q¯°À���Z	,®Q¯°À[∗ − Z	,®Q¯°À[t ≥ �, 
��r − Z��r∗ − �r©[�r© ≥ �, 

Z��r∗ + �r�[ − ��r�r� ≥ �, � = 1,2, … , ��, j�,	� ∈ [0, 1] 

� ∈ � = �� = ���, �
� ∈ 
��2��� + 2
�
 ��M�� ., ��, �
 ≥ 0, . ∈ 
6�                                        (55) 

4.2.3. The TOPSIS Algorithm for the BL-MOP Problem 

Following the above discussion, the algorithm for the 

proposed TOPSIS approach for solving the BL-MODM 

problem is given as follows [34]: 

Step 1: Calculate the individual maximum and minimum 

values of all the objective functions in the two levels under 

the system constraints. 

Step 2: Construct the PIS payoff table of the ULDM 

problem �36� and obtain �{∗ = Z%��∗ , %�
∗ , … , %�6�∗ [, the 

individual positive ideal solutions. 

Step 3: Construct the NIS payoff table of the ULDM 

problem �37� and obtain �{´ = Z%��t , %�
t , … , %�6�t [, the 

individual negative ideal solutions. 

Step 4: Use Eq. �38 to construct ,®®¯°���� and ,®Q¯°����. 

Step 5: Ask the DM to select p, 0Á = 1,2, … ,∞7. 
Step 6: Construct the payoff table of problem �39� and 

obtain Z,²{[∗
 and Z,²{[t

. 

Step 7: Elicit the membership functions }¹ºº»¼���� and }¹º½»¼����. 

Step 8: Formulate the model �46� for the ULDM problem. 

Step 9: Solve model �46� to get �∗ = ���∗, �
∗�, j�,	��∗ =����∗ , ��
∗, … , ����∗�. 

Step 10: Set the maximum negative and positive tolerance 

values on the decision vector ��∗ = ����∗ , ��
∗ , … , ����∗� , �r© and �r�, � = 1,2, … , ��. 

Step 11: Construct the PIS and NIS payoff table of the BL-

MODM problem. 

Step 12: Use Eq. �48 − 49� to construct ,®®¯°À��� and ,®Q¯°À���, respectively. 

Step 13: Construct the payoff table of problem �50� and 

obtain Z,²Ä[∗
 and Z,²Ä[t

. 

Step 14: Elicit the membership functions }¹ºº»¼À��� and }¹º½»¼À���. 

Step 15: Elicit the membership functions Eq. (47) }$�����r�, � = 1,2, … , ��. 

Step 16: Formulate the model �55� for the BL-MODM 

problem. 

Step 17: Solve model �55� to get �∗ = ���∗, �
∗�. 

Step 18: If the DM is satisfied with the candidate solution 

in Step 17, go to Step 20, else go to Step 19. 

Step 19: Modify the maximum negative and positive 

tolerance values on the decision vector ��∗ = ����∗ , ��
∗, … , ����∗�, �r© and �r�, � = 1,2, … , ��, go to 

Step 15. 

Step 20: Stop with a satisfactory solution, �∗ = ���∗, �
∗�, to 

the BL-MODM problem. 

5. Conclusion 

In this article we present a survey on different approaches 

for solving BLOP. Some basic approaches for solving the 

BLOP such as; vertex enumeration, branch and bound 

algorithm, Karush Kuhn-Tucker (KKT) transformation, fuzzy 

programming approach are exhibited. Finally, formulation of 

the BL-MODM problem and recently developed approaches, 

such as; FGP and TOPSIS approach, for solving such 

problem are presented. Several open points for research in 

the area of BLOP, from our point of view, to be studied in the 

future. Some of these points are given in the following: 

1. Interactive approach for BLOP with random rough 

parameters. 

2. Fractional multi-objective BLOP via particle swarm 
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optimization algorithm. 

3. Multi-level linear fractional optimization problem with 

rough environment via FGP. 
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