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Abstract: Nonlinear system identification is considered, where the nonlinear static function was approximated by a number of 

polynomial functions. It is based on a piecewise-linear Hammerstein model, which is linear in the parameters. The identification 

procedure is divided into two steps. Firstly we adopt the extended stochastic gradient algorithm to identify some unknown 

parameters. Secondly using singular value decomposition (SVD), we propose a new method to identify other parameters. The 

basic idea is to replace un-measurable noise terms in the information vectors by their estimates, and to compute the noise 

estimates based on the obtained parameter estimates. The applicability of the approach is illustrated by a simulation. 

Keywords: Nonlinear System, Hammerstein Systems, Polynomial Functions Approximation, Recursive Identification, 
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1. Introduction 

Modeling, identification and prediction are three main 

ubiquitous phenomena in our daily lives. Through our ideas 

and senses, we collect information about the world, then we 

interpret, predict and react actions according to our 

perceptions. In natural science, lots of experiments or 

observations guide us to formulate laws of nature, which 

describe different aspects of the world and let us predict all 

sorts of things, like planet movements or weather forecast. 

Also in modern technology, modeling and identification have 

much benefit to offer us one description corresponding to the 

physical object. Everywhere and everything around us, there 

is a need for automatic control mechanisms such as in 

aero-planes, cars, chemical process plants, mobiles phones, 

heating of houses etc. However to be able to control a system, 

one needs to know at least something about how it behaviors 

and reacts to different actions taken on it. Hence we need a 

model of the system. A system can informally be defined as an 

entity which interacts with the rest of the world through more 

or less well defined input and output data. A model is then an 

approximate description of the system. An ideal model should 

be simple, accurate and general. This approximate description 

of the system can be constructed by system identification 

strategy, as the goal of system identification is to build a 

mathematical model of a dynamic system based on some 

initial information about the system and the measurement data 

collected from the system. According to [1], the process of 

system identification consists of designing and conducting the 

identification experiment in order to collect the measurement 

data, selecting the structure of the model and specifying the 

parameters to be identified and eventually fitting the model 

parameters to the obtained data [2]. Finally the quality of the 

obtained model is evaluated through model validation process. 

Generally system identification is an iterative process and if 

the quality of the obtained model is not satisfactory, some or 

all of the listed phases can be repeated in order to obtain one 

satisfied model. 

Many nonlinear systems can be modeled by a Hammerstein 

model (linear time-invariant (LTI) block following some static 

nonlinear block), Wiener model (LTI block preceding some 

static nonlinear block), or Hammerstein-Wiener model (LTI 

block sandwiched by two nonlinear blocks) [3]. The 

Hammerstein model is a special kind of nonlinear systems 
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which has applications in many engineering problems and 

therefore, identification of Hammerstein models has been an 

active research topic for a long time. Existing methods in the 

literature can be roughly divided into six categories: the 

iterative method, the over-parameterization method, the 

stochastic method, the nonlinear least squares method, the 

separable least squares method and the blind method [4]. 

The Hammerstein model is a nonlinear system where a 

nonlinear block is followed by a linear dynamic block. The 

Hammerstein model has been widely used in many areas 

including nonlinear filtering, actuator saturations, 

audio-visual processes. There exists a large number of papers 

on the topic of the Hammerstein model identification. 

Reference [5] considered an extended stochastic gradient 

identification algorithm for Hammerstein-Wiener ARMAX 

systems. To improve the identification accuracy, an extended 

stochastic gradient algorithm with a forgetting factor is given. 

Reference [6] proposed three methods of separating the 

parameter estimates. The three methods are the averaged 

method, permutation and combination method and singular 

value method. Reference [7] considered two identification 

algorithms, an iterative gradient and a recursive stochastic 

gradient based, for a Hammerstein nonlinear ARMAX model. 

2. Problem Formulation 

In this paper we focus on the identification of Hammerstein 

model which consists of a nonlinear memory-less element 

followed by a linear dynamical system [8]. The true output 

( )x t  and the inner variable ( )u t
 
are immeasurable, ( )u t

 
is the system input, ( )y t is the measurement of ( )x t

 
but is 

corrupted by the disturbance ( )w t , the output of ( )N z  

driven by an additive white noise ( )v t
 
with zero mean, 

( )G z
 
is the transfer function of the linear part in the model, 

( )N z
 
is the transfer function of the noise model [10]. 

 

Figure 1. The discrete time SISO Hammerstein system. 

Assume that the linear dynamical block in Figure 1 is 

described by an ARMAX model, which has the 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

y t x t w t

B z
x t G z u t u t

A z

D z
w t N z v t v t

A z

= +

= =

= =

         (1) 

Here ( ) ( ),A z B z  and ( )D z are polynomials in the shift 

operator ( ) ( )1 1 1z z y t y t− − = −   with 

( )
( )
( )

1 2
1 2

1 2
1 2

1 2
1 2

1

1 d

d

n
n

n
n

n
n

A z a z a z a z

B z b z b z b z

D z d z d z d z

− − −

− − −

−− −

= + + +

= + +

= + + +

⋯

⋯

⋯

       (2) 

Notice that in the characterization of the Hammerstein 

model, ( )f u  and ( )G z are actually not unique. Any pair 

( ) ( )( ),af u G z a  for some nonzero and finite constant a  

would produce identical input and output measurements. In 

other others, any identification scheme can not distinguish 

between ( ) ( )( ),af u G z a
 
and ( ) ( )( ),f u G z . Therefore to 

get an unique parameterization, one of the gains of ( )f u
 
and 

( )G z
 
has to be fixed. There are several ways to normalize the 

gains. 

A nonlinear static function can be approximated by a 

number of basis functions, connected to each other and 

forming a piecewise-linear function. 

( ) ( )T
u t F u C= i                 (3) 

where C  is a vector of parameters representing values jc of 

the piecewise-linear function ( )u t  in knots. 

( )0 1
1 1

T

j m
m

C c c c c
+ ×

 =  ⋯ ⋯      (4) 

The knots are joints of line segments defined in terms of 

input signal u . 

( )0 1
1 1

T

j m
m

u u u u u
+ ×

 =  ⋯ ⋯       (5) 

satisfying 

0 1 1j j mu u u u u+< < < < < <⋯ ⋯  

Furthermore ( )F u is a vector of polynomial function. 
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( ) ( ) ( ) ( ) ( ) ( )0 1
1 1

T

j m
m

F u F u F u F u F u
+ ×

 =  ⋯ ⋯  

Element of the vector ( )F u are defined as follows: 

( )
0

m

i
j

j ii
i j

u u
F u u

u u=
≠

−=
−∏  

substituting into equation (3), then the nonlinear part in the 

Hammerstein model is in the following form: 

( ) ( ) ( )
0

m

j j

j

u t f u u c f u

=

= = ∑           (6) 

with 

( )
0

m

i
j

j ii
i j

u u
f u

u u=
≠

−=
−∏  

It can be easily seen that: 

( ) 1

0
j i ij

if i j
f u

if i j
δ

=
= =  ≠

           (7) 

( )j

j
j

f u
c

u
=                 (8) 

Therefore the plant (1) can also be represented by the 

following model: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0

0

m

j j

j

m
i

j
j ii

i j

A z y t B z u t D z v t

u t f u u c f u

u u
f u

u u

=

=
≠

= +

= =

−
=

−

∑

∏

       (9) 

A regressive form can be derived as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0

( ) ( )

n m

i j j

i j

A z y t B z u t D z v t b u t i c f u t i D z v t

= =

= + = − − +∑ ∑  

From the last equality, we can easily get the following 

recursive equation: 

( ) ( ) ( ) ( ) ( )
1 1 0 1

( ) ( )
dnn n m

i i j j i

i i j i

y t a y t i b u t i c f u t i d v t i v i

= = = =

= − − + − − + − +∑ ∑ ∑ ∑  

( ) ( ) ( ) ( ) ( )
1 1 0 1

( ) ( )
dnn n m

i ij j i

i i j i

y t a y t i u t i f u t i d v t i v iµ
= = = =

= − − + − − + − +∑ ∑∑ ∑  

where 

1 , 0,1ij i jb c i n j mµ = = =⋯ ⋯         (10) 

Define the parameter vector θ  and information vector 

( )tφ as 

( )

( )
( )

( )

0 0

0

1 1
,

n n

dm

a

t

v t
R t R

v t n

d

ϕµ
µ

θ φ

µ

 
   
   
  − = ∈ = ∈   
   
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 

⋮⋮
     (11) 
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1
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n

a
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( )
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a
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m
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 
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( )

( )
( )

( )

1

2 n
a

y t

y t
t R

y t n

ϕ

 − −
 − − = ∈
 
 
− −  

⋮
               (12) 

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1

2 2
, 0,1

j

j n
j

j

u t f u t

u t f u t
t R j m

u t n f u t n

ϕ

 − −
 
 − −

= ∈ = 
 
 

− −  

⋯

⋮
 

Then we have 

( ) ( ) ( )T
y t t v tφ θ= +  

Notice that ( )tϕ  in ( )tφ  is available but 

( ) ( 1,2 )dv t i i n− = ⋯  in ( )tφ  are unavailable. Let θ̂  

denotes the estimate ofθ . Since ( )v t is a white noise with 

zero mean, then 

( ) ( ) ˆˆ
T

y t tφ θ=                 (13) 
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It is the best output prediction. Consider the quadratic 

output prediction error criterion 

( ) ( ) ( ) ( ) ( )
2 2

1 1

ˆ ˆˆ
t t

T

i i

J y i y i y i tθ φ θ
= =

  = − = −    ∑ ∑    (14) 

The quadratic error function in (14) is one of the most 

common cost functions in the identification literature [9]. 

Many well-known Hammerstein model identification methods 

belong to this class and the differences lie only in the 

formulation of the information vector ( )tφ . Let 

( )

( )
( )

( )

( )

( )
( )

( )

1 1
,

1 1

T

T

T

ty t

y t t
Y t t

y

φ
φ

φ

  
  − −  = Φ =   
  
     

⋮ ⋮

        (15) 

Hence 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

ˆ ˆ ˆ ˆ
T

J Y t t Y t t Y t tθ θ θ θ   = − Φ − Φ = − Φ
   

 

Provided that ( )tΦ  is persistently exciting, minimizing 

( )ˆJ θ gives the least-squares estimate: 

( ) ( ) ( ) ( )
1

ˆ T Tt t t Y tθ
−

 = Φ Φ Φ             (16) 

However a difficulty arises because of ( )v t i− , ( )tΦ in 

the expression on the right-hand side of (16) contains 

unknown noise terms ( ) ( 1, 2 )dv t i i n− = ⋯ , so it is 

impossible to compute the estimate θ̂  by (16), our approach 

is based on the iterative identification principle [10]. Let 

1, 2k = ⋯ the unknown variables ( )v t i− are replaced by their 

corresponding estimate ( )ˆ
kv t i−

 
at iteration k , and ( )tφ  

are replaced by ( )ˆ kφ
 
[11]. Let ˆ

kθ  be the iterative solution 

ofθ . Thus the estimate of ( )v t is given by 

( ) ( ) ( )1 1
ˆ ˆˆ

k k kv t i y t i t iφ θ− −− = − − −            (17) 

( )

( )
( )

( )

0
ˆ 1ˆ

ˆ

k n
k

k d

t

v t
t R

v t n

ϕ

φ

 
 − = ∈
 
 

−  

⋮

                (18) 

( )

( )
( )

( )

ˆ

ˆ 1

ˆ 1

T
k

T
k

k

T
k

t

t
t

φ

φ

φ

 
 
 −

Φ =  
 
 
 

⋮

              (19) 

Based on (16) and replace ( )tΦ by ( )k tΦ , the iterative 

solution ˆ
kθ  of θ may be computed by: 

( ) ( ) ( ) ( )
1

ˆ , 1,2T T
k k k kt t t Y t kθ

−
 = Φ Φ Φ =  ⋯     (20) 

To initialize the algorithm, we take 0
ˆ 0θ = or some small 

real vector, e.g. 
0

6
0
ˆ 10 nIθ −=  with 

0nI  being an 0n

-dimensional column vector, whose elements are 1. As θ  

comes in linearly, algorithm (20) turns out to be adequate 

parameterization to get estimates of the parameters ,i ija µ and

id , using the iterative least squares algorithm. 

3. Basic Formulations for Plant Model 

Identification 

From estimates ( )ˆ tθ ofθ , one has to get estimates ( )ˆ ˆ,i jb c

of ( ),i jb c for 1 , 0,1i n j m= =⋯ ⋯ . We will first construct a 

procedure to go back from 'ij sµ  to 'ib s  and 'ic s . Then 

relations to get ( )ˆ ˆ,i jb c from ijµ  will be established. 

Observe that (10) can be rewritten as follows: 

10 1 1

0 1

0 1

m

m

n m n

b

M c c c

b

µ µ

µ µ

   
   = =      
      

⋯

⋮ ⋮ ⋮ ⋮ ⋯

⋯

    (21) 

Notice that since M is a rank-1 matrix, 'ib s and 'ic s  can 

not be determined uniquely from 'ij sµ , unless extra 

conditions are imposed on 'ib s and 'ic s . Uniqueness of the 

solution of (21) can be achieved by imposing the following 

couple of conditions: 

2

1

1

n

i

i

b

=

=∑  and ( )1 0nb bρ >  ⋯        (22) 

where ( )1 nb bρ   ⋯  denotes the first component of the vector

1

T

nb b  ⋯  that satisfies: 

[ ]( )1
1

supn j
j n

b b bρ
≤ ≤

=⋯  

i.e the first component with a great absolute value. 

Based on the above observations [11], a procedure is 

designed using singular value decomposition (SVD) [10]. 

Proposition 2.1. let 
( )1n m

M R
× +∈ be any rank-1 real matrix. 

Then its SVD decomposition has the following form: 

1 0 0

0 0 0

M

σ 
 = Γ Σ 
  

⋯

⋮ ⋮ ⋮

⋯

          (23) 

where 
( ) ( )1 1

,
m mn nR R

+ × +×Γ ∈ Σ ∈
 
and 1σ is the unique 
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nonzero singular value of M . Furthermore M can be 

uniquely decomposed as follows: 

[ ]
1

0 1 m

n

b

M c c c

b

 
 =  
  

⋮ ⋯       (24) 

with 

[ ] ( ) [ ]
[ ]

1
1

1

0 0

0 0

T
T

n T
b b sign r

σ

σ

Γ
=

Γ

⋯
⋯

⋯

    (25) 

[ ] ( ) [ ] [ ]0 1 1 0 0 1 0 0
T T

mc c c sign r σ= Γ × Σ⋯ ⋯ ⋯  

where 

[ ]( )10 0r ρ σ= Γ ⋯  

The vector 1

T

nb b  ⋯ thus obtained is the only solution 

of (23) that satisfies: 

2

1

1

n

i

i

b

=

=∑  and ( )1 0nb bρ >  ⋯  

Estimates ( )ˆ ˆ,i jb c of ( ),i jb c can be recovered from 'ij sµ . 

Following closely proposition 2.1[12], one first considers the 

matrix: 

( )
( ) ( )

( ) ( )

10 1

0

ˆ ˆ

ˆ

ˆ ˆ

m

n nm

t t

M t

t t

µ µ

µ µ

 
 =  
 
 

⋯

⋮ ⋮ ⋮

⋯

          (26) 

Proposition 2.2: let the singular values decomposition of 

( )M̂ t  be written as follows: 

( ) ( )

( )
( )

( )

( )
1

2

0 0

0
ˆ

0 0

0 0 n

t

t
M t t t

t

σ
σ

σ

 
 
 = Γ Σ
 
 
  

⋯

⋮ ⋱

⋯

 

Then proposition2.1 suggests the following estimates for 

the parameters ( ),i ib c  

( )

( )
( )( ) ( ) ( )

( ) ( )

1
1

1

ˆ
0 0

0 0ˆ

T

T

n

b t
t t

sign r t

t t
b t

σ

σ

 
 Γ   = 

   Γ    

⋯
⋮

⋯

  (27) 

( )
( )

( )

( )( ) ( ) ( ) [ ] ( )
0

1
1

ˆ

ˆ
0 0 1 0 0

ˆ

T

m

c t

c t
sign r t t t t

c t

σ

 
 
   = Γ × Σ  
 
  

⋯ ⋯
⋮

 (28) 

( ) ( ) ( )( )1 0 0
T

r t t tρ σ = Γ  ⋯        (29) 

The estimates thus obtained are the only ones that satisfy 

the conditions 

( )

( ) ( )( )

2

1

1

1

ˆ ˆ 0

n

i

i

n

b t

b t b tρ
=

=

  >
 

∑

⋯

 

Notice that the singular values ( ) ( )2 nt tσ σ⋯ have not 

been accounted for in the rules (27), (28) and (29). It has no 

effect when the 'ij sµ  converge to their true values, because 

the rank of matrix ( )M̂ t converges to 1. This is made 

precisely in the next proposition. 

Proposition 2.3: let ( ){ }M̂ t be the real matrix sequence 

defined by (26). Let ( ) ( )1
ˆ ˆ

nb t b t 
 

⋯  and 

( ) ( )0
ˆ ˆ

mc t c t  ⋯  be the vectors obtained from ( )M̂ t  

according to the rules (27), (28) and (29). If the 'ij sµ
converge to their true values ijµ , then the estimates 

( ) ( )( )ˆ ˆ, ji
b t c t will converge to their true values ( ),i jb c . 

4. Recursive Identification Algorithm 

In this section, we derive a recursive identification 

algorithm which can be on-line implemented. We rewrite the 

equation. 

( ) ( ) ( )T
y t t v tφ θ= +             (30) 

Equation.(27) is a pseudo-linear regression identification 

model for the Hammerstein system. Note that ( )tϕ  in ( )tφ
is available but ( ) , 1, 2 dv t i i n− = ⋯ in ( )tφ are unavailable. 

Let E  denote the expectation operator, ( )ˆ tθ the estimate of 

θ  at time t , Tx tr xx =
 

 the norm of the matrix x . Since 

( )v t is a white noise, forming a quadratic cost function 

( ) ( ) ( ) 2
J E y t tθ φ θ = −

  
 

minimizing ( )J θ leads to the following stochastic gradient 

algorithm of estimating θ  

( ) ( ) ( )
( ) ( ) ( ) ( )ˆ ˆ ˆ1 1

Tt
t t y t t t

r t

φ
θ θ φ θ = − + − −  

     (31) 

( ) ( ) ( ) ( )2
1 , 0 1r t r t t rφ= − + =        (32) 
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However the algorithm in (31) and (32) is impossible to 

realize because the information vector ( )tφ on the right-hand 

side contains unknown noise terms ( )v t k− . The solution is to 

replace the unknown variables ( )v t i− with their 

corresponding estimates ( )v̂ t k− , and further define: 

( ) ( ) ( ) ( )ˆ ˆ ˆ1
T

dt t v t v t nφ ϕ = − − ⋯       (33) 

From (33), we have 

( ) ( ) ( )T
v t y t tφ θ= −  

replacing ( )tφ and θ  in the above equation with ( )ˆ tφ and

( )ˆ tθ , the estimated residual can be computed by 

( ) ( ) ( ) ( )ˆ ˆˆ
T

v t y t t tφ θ= −           (34) 

replacing ( )tφ in (31) and (32) with ( )ˆ tφ , we can obtain the 

extended stochastic gradient [ ESG] identification algorithm 

of estimating θ  

( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ
ˆ ˆ ˆ ˆ1 1

Tt
t t y t t t

r t

φ
θ θ φ θ = − + − −  

 

( ) ( ) ( ) ( )
2

ˆ1 , 0 1r t r t t rφ= − + =         (35) 

( )

( )
( )

( )

ˆ 1ˆ

ˆ d

t

v t
t

v t n

ϕ

φ

 
 − =
 
 

−  

⋮
 ( )

( )
( )

( )
( )

0

ˆ

ˆ

ˆ

ˆ

ˆ

m

a t

t

t

t

d t

µ
θ

µ

 
 
 
 =
 
 
 
  

⋮           (36) 

To initialize this ESG algorithm ( )ˆ 0θ is generally taken to 

be some small real vector, e.g. 
0

6
0
ˆ 10 nIθ −= with 

0nI  being 

an 0n -dimensional column vector whose elements are 1. 

The ESG algorithm has low computation, but its 

convergence is relatively slow. In order to improve the 

tracking performance of the ESG algorithm, we introduce a 

forgetting factor λ  in the ESG algorithm to get the ESG 

algorithm with a forgetting factor, which is referred to the 

EFG algorithm. 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

ˆ
ˆ ˆ ˆ ˆ1 1

ˆ1 , 0 1,0 1

Tt
t t y t t t

r t

r t r t t r

φ
θ θ φ θ

λ φ λ

 = − + − −  

= − + = < <

   (37) 

when 1λ = , the EFG algorithm reduces to the ESG algorithm. 

5. Simulation 

A simulation is given to demonstrate the effectiveness of the 

proposed algorithms. 

Consider the following system: 

( ) ( ) ( ) ( ) ( ) ( )A z y t B z u t D z v t= +  

( ) 1 2 1 2
1 21 1 1.60 0.80A z a z a z z z− − − −= + + = − +  

( ) 1 2 1 2
1 2 0.80 0.60B z b z b z z z− − − −= + = +  

where 

2 20.80 0.60 1+ =  

( ) 1 1
11 1 0.64D z d z z− −= + = −  

( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 1 2 2

0 1 20.20 0.40 0.60

u t u c f u c f u c f u

u f u f u f u

 = + + 

 = + + 

 

where 

( )
2

0

i
j

j ii
i j

u u
F u u

u u=
≠

−=
−∏  

[ ]1.60,0.80,0.16,0.24,0.32,0.24,0.48,0.36, 0.61
Tθ = − −

 

( ){ }u t
 
is taken as a persistent excitation signal sequence with 

zero mean and unit variance 2 21.00uσ = , and ( ){ }v t as a 

white noise sequence with zero mean and constant variance 
2
vσ . Apply the proposed algorithms in (28)-(34) and (25)-(26) 

respectively, to estimate the parameters of this system. The 

parameter errors δ  versus t  are shown in Figure 2, where 

the date length is 2000, the forgetting factor 0.98λ = , the 

absolute parameter estimation error ( ) ( )ˆ t tδ θ θ= − , and the 

noise-to-signal ratio 27.35%nsδ = . When changing 0.90λ = , 

the parameter error δ  versus t  is shown in Figure 3. 
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Solid line: the ESG algorithm; dots: the EFG algorithm. ( 0.98λ = ) 

Figure 2. The parameter estimation error δ  versus t . 

 

Figure 3. The parameter estimation error δ  versus t  of the EFG algorithm.( 0.90λ = ). 

6. Conclusion 

We have considered system identification based on 

Hammerstein model, where the nonlinear element is defined 

by a piecewise-linear function. We have designed an 

identification scheme that determines precisely the unknown 

nonlinear parameters ( ),i jb c  1 , 0,1i n j m= =⋯ ⋯  and 

those of the linear transfer function. An iterative algorithm 

based on replacing un-measurable noise variables by their 

estimates are derived for Hammerstein nonlinear models. 
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