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Abstract: This paper proposes an improved firefly algorithm (IFA)based on local search method for solving 

globaloptimization problems. The main feature of the proposed algorithm is to improve the solutions quality generated from 

the fireflies by embedding the local search method. Moreover, the new solutions are generated based on the movement formula 

of the fireflies that is modified by exponential formula. The exponential formula reduces the randomization parameter so that it 

decreases gradually as the optimum is approaching. In addition, local search method (LSM) is introduced to improve the 

solution quality. Finally, the proposed algorithm is tested on several benchmark problems from the usual literature and the 

numerical results have demonstrated the superiority of the proposed algorithm in finding the global optimal solution. 
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1. Introduction 

Optimization problems are of importance for the 

industrial as well as the scientific world in many 

applications. There are many optimization problems that 

present attributes, such as high nonlinearity and 

multimodality, the solution of this kind of problems is 

usually a complex task. Moreover, in many instances, 

complex optimization problems present noise and/or 

discontinuities which make traditional deterministic 

methods inefficient to find the global solutions. 

Meanwhile, global optimization methods based on meta-

heuristics are robust alternatives to solve complex 

optimization problems and do not require any properties 

of the objective function have been developed. 

Due to the computational drawbacks of existing 

numerical methods, researchers have to rely on meta-

heuristic algorithms based on simulations to solve some 

complex optimization problems. A common feature in 

meta-heuristic algorithms is that they combine rules and 

randomness to imitate natural phenomena. These 

phenomena include the biological evolutionary process 

(e.g., the genetic algorithm (GA) [1] and the differential 

evolution (DE) [2]), animal behavior (e.g., particle swarm 

optimization (PSO) [3] and ant colony algorithm (ACA) 

[4]), and the physical annealing process (e.g., simulated 

annealing (SA) [5]). Over the last decades, many meta-

heuristic algorithms and their improved algorithms have 

been successfully applied to various engineering 

optimization problems [6, 7, 8, 9, 10]. They have 

outperformed conventional numerical methods on 

providing better solutions for some difficult and 

complicated real-world optimization problems. 

A promising new meta-heuristic algorithm denoted as 

firefly algorithm (FA) which inspired by social behavior 

of fireflies and the phenomenon of bioluminescent 

communication. There are two important issues in the 

firefly algorithm that are the variation of light intensity 

and formulation of attractiveness. Yang [21] simplified 

that the attractiveness of a firefly is determined by its 

brightness which in turn is associated with the objective 

function. In general, the attractiveness is proportional to 

their brightness. Furthermore, every member of the firefly 

swarm is characterized by its bright that can be directly 

expressed as an inverse of an objective function for a 

minimization problem.  

In this paper we propose improved firefly algorithm 

based on local search method for named IFA-LSM for 
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solving the global optimization problems. The motivation 

for the proposed algorithm is to improve the solutions 

quality for solving the global optimization problems. This 

methodology consists of two phases. The first phase 

explore new solutions based the movement formula of the 

fireflies that is modified by exponential formula. The 

exponential formula reduces the randomization parameter 

so that it decreases gradually as the optimum is 

approaching, while the other phase employs the local 

search method to exploit the existing solutions to improve 

the solution quality of optimization problems. By these 

phases, the proposed algorithm achieves robust results 

compared to the current well-known algorithms in the 

literature. Finally, the exploration and exploitation 

enhanced the superiority of the proposed approach in 

finding the global optimal solution.  

The organization of the remaining paper is as follows. 

In Section 2 we describe some preliminaries on 

optimization problems and basics of FA. In Section 3, the 

proposed algorithm, named IFA-LSM, is explained in 

detail. Experiments anddiscussions are presented in 

Section 4. Finally, we conclude the paper in Section 5. 

2. Preliminaries 

2.1. Statement of Global Optimization Problem 

The general numerical global optimization problem [22] 

can be defined as in (1):  

Find x  such that  

1 2min ( ), ( , ,..., )= ∈ℜx x
n

nF x x x
                (1) 

where S⊆Ω∈x . The objective function F  is defined on 

the search space ℜ⊆S  and the set S⊆Ω  defines the 

feasible region. Usually, the search space S  is defined as an 

−n dimensional rectangle in nℜ , domains of variables 

defined by their lower and upper bounds as in (2): 

, 1, 2,...,L U

j j j
x x x j n≤ ≤ =                       (2) 

2.2. The Basics of FA 

FA [30] is one of the most recent meta-heuristic 

techniques for approximate optimization. The inspiring 

source of FA is the social behavior of fireflies for sharing 

food with others or for attracting the prey. At the core of 

this behavior is the direct communication between the 

fireflies by means of bioluminescent communication, 

which enables them to moves toward a neighbor that 

glows brighter.  

There are two important issues in the firefly algorithm 

that are the variation of light intensity and formulation of 

attractiveness. Yang [10] simplified that the attractiveness 

of a firefly is determined by its brightness which in turn is 

associated with the objective function. In general, the 

attractiveness is proportional to their brightness. 

Furthermore, every member of the firefly swarm is 

characterized by its bright that can be directly expressed 

as an inverse of an objective function for a minimization 

problem. Based on this objective function, initially, all the 

agents (fireflies) are randomly dispersed across the search 

space. The two stages of the firefly algorithm are as 

follows. 

1) Variation of light intensity: Light intensity is related 

to objective values [10]. So for minimization 

problem a firefly with high intensity will attract 

another firefly with high intensity. Assume that there 

exists a swarm of m  agents (fireflies) and 
i

x  

represents a solution for a firefly i , whereas )(f
i

x  

denotes its fitness value. Here the brightness I  of a 

firefly is selected to reflect its current position x  of 

its fitness value )(f x , given as in (3): 

( ) 1 ( ) , 1,2,...,x x
i i

I f i m= =         (3) 

2) Movement toward attractive firefly: The firefly has an 

attractiveness which is proportional to the light intensity 

seen by adjacent fireflies. Each firefly has its distinctive 

attractiveness β  which implies how strong it attracts 

other members of the swarm. However, the 

attractiveness β  is relative; it will vary with the 

distance. 
ij

r  between two fireflies i  and j  at locations 

i
x  and 

j
x  respectively, is given as in (4): 

x xij i jr = −                             (4) 

The attractiveness function )r(β  of the firefly is 

determined by using (5): 

2

0( ) −= rr e γβ β                             (5) 

where 
0

β  is the attractiveness at 0=r  and γ  is the light 

absorption coefficient. 

The movement of a firefly i  at location 
i

x  attracted to 

another more attractive (brighter) firefly j  at location 
j

x  is 

determined as in (6): 

2

0 0( 1) ( ) ( 0.5)x x x x
−+ = + − + −r

i i j it e randγβ α   (6) 

where the second term is due to the attraction while the third 

term is randomization with α  being the randomization 

parameter and rand  is a random number generator 

uniformly distributed in ],[ 10 . The pseudo code of the FA 

can be summarized in the Table 1. 
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Table 1. The pseudo code of the FA. 

Set values of parameters. 

Create an initial population of fireflies, m, within n-dimensional search space , 1,2,...,=xi i m . 

Evaluate the fitness of the population ( )xif which is inversely proportional to light intensity ( )xiI . 

while (not termination condition) do 

for 1=i to m  

for 1=j to m . 

if <i jI I , 

Move firefly i  towards j  by using Equation (6) 

end if 

Vary attractiveness with distance r  via 
2re γ−

 

Evaluate new solutions and update light intensity by using Equation (5) 

end for j  

end for i  

Rank fireflies and find the current best; 

end while 

 

3. The Proposed Algorithm 

The motivation for the proposed algorithm is to 

improve the solutions quality for solving the global 

optimization problems compared with the state of the art. 

By extending the basic ideas of FA, we can 
develop the following IFA-LSM. 

The procedure starts with an appropriate definition of 

objective functions with associated nonlinear constraints. We 

first initialize a population of m fireflies so that they should 

distribute among the search space as uniformly as possible. 

This can be achieved by using sampling techniques via 

uniform distributions. Once the tolerance or a fixed number 

of iterations is defined, the iterations start with the evaluation 

of brightness or objective values of all the fireflies and 

compare each pair of fireflies. Then, firefly is attracted to 

another more attractive (brighter) firefly. The main steps of 

the IFA-LSM are summarized as follows: 

Step 1. Initialization 

Initialize a swarm of fireflies with assigned a random 

vector )x,...,x,x(,
n21

x , where each firefly contains n  

variables (i.e., the position of the thi  firefly in the n  

dimensional search space can be represented as

)x,...,x,x(
iniii 21

=x ). Furthermore every member of the 

swarm is characterized by its light intensity (i.e., initialize 

each firefly with distinctive light intensity

m,...,,i),(I(
i

21
0

=x ). 

Step 2. Light intensity 

Calculate the light intensity ,m,...,,i),(I
ii

21=x for each 

firefly which in turn is associated with the encoded 

objective function, where for minimization problem the 

brighter firefly represents the minimum value for )(I x . 

Step 3. Movement toward attractive firefly 

In this step, each member of the swarm explores new 

solution based on the movement of a firefly. The 

traditional movement of a firefly is implemented by using 

Equation (6) where the randomization term may moves the 

firefly to lose its best location, so we introduce a 

modification on the randomization term that makes the 

fireflies approached from the optimum. This modification 

represents a further improvement on the convergence of 

the proposed algorithm by using Equations (7) and (8). 

2

0( 1) ( ) ( 0.5)x x x x
r

i i j i tt e randγβ α−+ = + − + −   (7) 

0
, 1,2,...,t

t
t Tα α θ= =                          (8) 

 

 

where 0α  is the initial randomness factor, T  is 

the maximum number of generations, and ]1,0[∈θ  is the 

randomness reduction constant.  

Step 4. local search method  

In this step the local search scheme is carried around 

the found solution by fireflies in order to enhance the 

existing solution by the fireflies, therefore the fireflies 

move in new directions in search of newer regions. The 

pseudo code of the local search scheme is shown in Table 

2. 

The flowchart of the proposed IFA-LSM approach is 

shown in Figure 1. 

Table 2. The pseudo code of the local search method. 

Input: 
U
i

L
ini xxxxxx ;);,...,,...,,( 21=x ; number of maximum 

iteration. 

Set 0=t  

Generate xd  ( xd nLU )(*)(*5. ε−=  

If Ω∈′+=′∃ xxxx |d ,then xx ′=new  

Else if Ω∈′−=′∃ xxxx |d Ω∈′x ,then xx ′=new  

Else ][=newx  then 1+= tt  

End if 

output: newx  
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Figure 1. The flowchart of the proposed IFA-LSM. 

4. Experiments and Discussions 

An extensive set of experiments have been conducted, in 

order to show IFA-LSM algorithm's effectiveness for the 

purpose of global optimization. fifteen common test 

functions were used in the experiments and then the 

evaluated results were compared with the prominent 

algorithms that reported in [19, 23] which are called 

successive zooming genetic algorithm (SZGA), harmony 

search theory (HS), dynamic random search technique 

(DRASET) [23], chaotic particle swarm 

optimization(CPSO), particle swarm optimization (PSO), 

genetic algorithm (GA) and particle swarm ant colony 

optimization (PSACO) [19]. The test functions, which are 

benchmark from [19, 23], are listed in Table 3. Table 3 gives 

the details of the test functions, including their equations, 

dimensions, domains and the optimal values. Selected test 

functions are run on PC, which has Pentium 4 3.0 GHz 

processor and 1.0 GB RAM while testing the performance 

IFA-LSM. The IFA-LSM algorithm had been coded in 

MATLAB 7. 

4.1. Parameters Setting 

The proposed algorithm contains number of parameters. 

These parameters affect the performance of the proposed 

algorithm. Extensive experimental tests were conducted to 

see the effect of different values on the performance of the 

proposed algorithm. Based upon these observations, the 

following parameters have been set as in Table 4. 

Table 3. Test functions. 

Test functions Dimension Domain optimal 

( ) ( )2 2
1 1 2 1 22 0.3cos 3 0.4cos 4 0.7= + − − +F x x x xπ π  2 [-1.281.28] 0 

( ) ( ) ( ) ( )2 1 1 2 2[cos 2 cos 2.5 2.1]*[2.1 cos 3 cos 3.5 ]= + − − +F x x x xπ π π π  2 [-11] -16.09172 

1
25 2

6 1
3

1 1

0.002 ( ( ) )

−

−

= =

 
 = + + − 
  

∑ ∑ i ij

j i

F j x a  2 [-65.53665.536] 0.9980 

32 16 0 16 32 32 16 0 16 32 32 16 0 16 32 32 16 0 16 32 32 16 0 16 32

32 32 32 32 32 16 16 16 16 16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32

− − − − − − − − − − 
=  − − − − − − − − − − 

a  

2
2

4 2 1 1 12

5.1 5 1
6 10 1 cos( ) 10

84

   = − + − + − +   
  

F x x x x
π ππ

 2 
1

2

5 10

0 15

∈ −  

∈   

x

x

 0.3978873 

( )4
2 2 2 21

5 1 1 1 2 2 24 2.1 4 4
3

 
 = − + + + −
 
 

x
F x x x x x x  2 

1

2

3 3

2 2

∈ −  

∈ −  

x

x
 -1.0316285 

( ) ( )( )
( ) ( )( )

2 2 2
6 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

1 1 19 14 3 14 6 3 *

30 2 3 18 32 12 48 36 27

F x x x x x x x x

x x x x x x x x

= + + + − + − + +

+ − − + + − +
 2 5 5−    3 

5 5

7 1 2

1 1

cos(( 1) ) * cos(( 1) )

= =

   
   = + + + +
      
   
∑ ∑
i i

F i i x i i i x i  2 10 10−    -186.73091 
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Test functions Dimension Domain optimal 

( ) ( )
2 22

8 2 1 1100 1= − + −F x x x  2 10 10−    0 

( ) ( )
2 22 2 4

9 1 2 1 2 1 2
1 1

exp 25 sin (4 3 ) 10
2 2

  = + − + − + + − 
  

F x x x x x x  2 5 5−    1 

2
2 2 2

2 2 1 2
10 1 2 4

1 1 2

1 1001
12

10 ( )

 + +
 = + + +
 
 

x x x
F x

x x x
 2 0 10    1.74 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 222 2
11 2 1 1 4 3 3

2 2
2 4 2 4

100 1 90 1

10.1 1 1 19.8 1 1

= − + − + − + − +

 − + − + − −  

F x x x x x x

x x x x

 4 10 10−    0 

( ) ( ) ( ) ( )2 42 4
12 1 2 3 4 2 3 1 410 5 2 10= + + − + − + −F x x x x x x x x  4 5 5−    0 

( )( ) ( )( )2 2
1

19
1 1

2 2
13 1

1

+ + +
+

=

 
 = +
 
 

∑
i ix x

i i

i

F x x  20 1 4−    0 

( ) ( ) ( )
19

2 22 2
14 1 1 20

1

( / 20) 10sin ( ) 1 1 10sin ( ) 1+
=

 
  = + − + + −   

  
∑ i i

i

F x x x xπ π π  20 10 10−    0 

4 3
2

15

1 1

exp ( )

= =

 
 = − − − 
  

∑ ∑i ij j ij

i j

F c a x p  3 [01] -3.86278 

i  ija  
ic  ijp  

1

2

3

4

 

3 10 30

0.1 10 35

3 10 30

0.1 10 35

 

1

1.2

3

3.2

 

0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.0381 0.5743 0.8828

 

 

Table 4. The algorithm parameters. 

Initial light intensity ( 0I  )  0 

Initial attractiveness ( 0β ) 1 

The light absorption coefficient( γ ) 1 

The randomness reduction constant(θ ) 0.9 

Randomization parameter ( 1α ) 0.2 

4.2. The Comparison of Solution Quality 

In order to examine the capability of IFA-LSM in global 

optimization problems, a comparison is made with the 

prominent algorithms from the literature. The test functions 

have been solved by IFA-LSM for 10 times. The starting 

values of the variables for each problem were selected 

randomly for all runs from the solution space. The results 

found by IFA-LSM such as the best and average function 

value, numbers of function evaluation (NFE) and solution 

time in seconds have been recorded in Table 5, whereas for 

the other algorithms only the function value and numbers of 

function evaluation are given because the solution times, 

the best and average function value for some algorisms not 

given. It is obtained that founded best function values by 

IFA-LSM are the same or the closest as average function 

values for all functions except from the functions

12851 ,,, FFFF . As it deduced from Table5, the IFA-LSM is 

successful while finding the optimum solution of the given 

functions and IFA-LSM outperforms the prominent 

algorithms for all functions. On the other hand, IFA-LSM 

can find the global minimum with less iteration number 

than compared algorithms except for the functions

10621 ,,, FFFF . 

In this subsection, a comparative study has been carried 

out to assess the proposed approach concerning quality of 

the solution. On the first hand, evolutionary techniques 

suffer from the quality of solution. Therefore the proposed 

approach has been used to increase the solution quality by 

combining the two merits of two meta-heuristic algorithms. 

On the other hand, unlike classical techniques our approach 

search from a population of points, not single point. 

Therefore our approach can provide a globally optimal 

solution. In addition, our approach uses only the objective 

function information, not derivatives or other auxiliary 

knowledge. Therefore it can deal with the non-smooth, non-

continuous and non-differentiable functions which are 

actually existed in practical optimization problems. Another 

advantage is that the simulation results prove superiority of 

the proposed approach to those reported in the literature, 

where it is completely better than the other approaches. So, 

the IFA-LSM approach is quite competitive when compared 

with the other existing methods. Finally, the reality of using 

the proposed approach to handle complex problems of 

realistic dimensions has been approved due to procedure 

simplicity. 
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5. Conclusions 

In this paper, we propose IFA-LSM algorithm which 

hybridizes the solution construction mechanism of FA with 

the LSM. In order to overcome the drawback of classical ant 

colony algorithm this not suitable for solving global 

optimizations, the solutions obtained by the ants are evolve 

by roaming the fireflies through the search space. Therefore 

the fireflies refine the positions found by the ants by 

producing number of solutions equal the number of solutions 

generated by the ants. On the other hand, the performance of 

FA is improved by reducing the randomization parameter so 

that it decreases gradually as the optima are approaching. The 

comparisons of numerical results show that there is as cope 

of research in hybridizing swarm intelligence methods to 

solve difficult continuous optimization problems and the 

IFA-LSM is a promising and valuable tool to solve global 

nonlinear optimization problems. A careful observation will 

reveal the following benefits of the proposed optimization 

technique. 

a) It competitive when compared with the other existing 

algorithm. 

b) The proposed algorithm is capable of capturing the 

global minimum for the problems very efficiently. 

c) The carried out results verified the validity and the 

advantages of the proposed approach. 

d) It can accelerate the convergence and boost the 

performance through elapsed low computational time.  

The future work will be focused on two directions: (i) the 

application of IFA-LSM to constrained optimization 

problems; and (ii) the extension of the method to solve the 

multi-objective problems. 

Table 5. The comparison of solution quality. 

functions IFA-LSM  Compared algorithms  

 Function value NFE Time(s) Name Function value NFE 

 Best Average Best Average Best Average    

1F  0 1.792475E-20 3150 3099 0.2810 0.3388 
SZGA 0.298002E-7 4000 

DRASET 0 957 

2F  -16.09172 -16.09172 2100 1780 0.2500 0.2266 
SZGA -16.09172 4000 
DRASET -16.09172 722 

3F  0.9980 0.9980 1600 1600 0.2970 0.3108 
SZGA 0.9980 2000 

DRASET 0.9980 1823 

4F  0.3978873 0.3978873 200 200 0.6400 0.641 

SZGA 0.39789 4000 

DRASET 0.39788737 219 
PSACO 0.3979 209 

CPSO 0.3979 NA* 

PSO 0.4960 NA 
GA 0.4021 NA 

5F  -1.03162845 -1.0316284 880 916 0.0940 0.0958 
SZGA -1.03163 3000 

DRASET -1.0316284 1738 

6F  3 3 1370 1566 0.1720 0.2359 

SZGA 3 4000 

DRASET 3 2550 

HS 3 400000 
PSACO 3 240 

CPSO 3 NA 

PSO 4.62602 NA 
GA 3.1471 NA 

7F  -186.73091 -186.73091 1600 1650 0.2030 0.2031 

SZGA -186.73091 3000 

DRASET -186.73091 1665 
PSACO -186.7309 534 

CPSO -186.7274 NA 

PSO -180.3265 NA 
GA -182.1840 NA 

8F  0 3.311002E-11 10250 11400 3.8750 4.6172 
DRASET 3.9053E-15 11623 

HS 5.684341886E-15 50000 

9F  1 1 4250 4337 1.0310 1.0608 
DRASET 1 29663 

HS 1 45000 

10F  1.744151 1.744151 1100 1100 0.0790 0.0790 
DRASET 1.74415200796 251 
HS 1.74415 800 

11F  8.9518E-15 1.3022714E-15 32135 36750 19.5310 15.0280 

SZGA 0.13074E-5 175438 

DRASET 3.72E-12 49855 
HS 4.8515E-9 70000 

12F  0 7.00841E-16 4800 4815 2.8900 4.8530 
DRASET 8.17E-9 79990 

HS 0.1254032468E-11 100000 

13F  3.5906E-18 3.3480E-18 16500 5835 5 1.6668 
SZGA 0.25422E-7 320000 

DRASET 2.45E-16 49325 

14F  4.1651E-17 3.34037E-17 10200 9780 2.8440 2.8312 
SZGA 0.230033E-3 239521 
DRASET 5.93E-12 19994 

15F  -3.8628 -3.8628 1500 1860 2.907 2.900 

PSACO -3.8628 2000 
CPSO -3.8610 NA 
PSO -3.8572 NA 

GA -3.8571 NA 
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